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Abstract 29 

High-fidelity and computationally efficient energy forecasting models for building systems are needed to 30 
ensure optimal automatic operation, reduce energy consumption, and improve the building’s resilience 31 
capability to power disturbances. Various models have been developed to forecast building energy 32 
consumption. However, given buildings have different characteristics and operating conditions, model 33 
performance varies. Existing research has mainly taken a trial-and-error approach by developing multiple 34 
models and identifying the best performer for a specific building, or presumedone universal model form 35 
which is applied on different building cases. To the best of our knowledge, there does not exist a 36 
generalized system framework which can recommend appropriate models to forecast the building energy 37 
profiles based on building characteristics. To bridge this research gap, we propose a meta-learning based 38 
framework, termed Building Energy Model Recommendation System (BEMR). Based on the building’s 39 
physical features as well as statistical and time series meta-features extracted from the operational data 40 
and energy consumption data, BEMR is able to identify the most appropriate load forecasting model for 41 
each unique building.Three sets of experiments on 48 test buildings and one real building are conducted. 42 
The first experiment is to test the accuracy of BEMR when the training data and testing data cover the 43 
same condition.  BEMR correctly identified the best modelon 90% of the buildings. The second 44 
experiment is to test the robustness of the BEMR when the testing data is only partially covered by the 45 
training data.BEMR correctly identified the best model on 83% of the buildings. The third experiment 46 
uses a real building case to validate the proposed framework and the result shows promising applicability 47 
and extensibility. The experimental results show that BEMRis capable of adapting to a wide variety of 48 
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building types ranging from a service restaurant to a large office, andgives excellent performance in terms 49 
of both modeling accuracy and computational efficiency. 50 

51 
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1 INTRODUCTION 56 

According tothe U.S. Energy Information Administration (EIA),buildings consume nearly half (48%) 57 
of the total energy and produce almost 45% of CO2 emissions in the United States[1]. This drives the need 58 
to develop high-fidelity and computationally efficient energy forecasting models for building systemsto 59 
ensureoptimal automatic operation, reduce energy consumption, and improve the building’s resilience 60 
capability to power griddisturbances[2]. Existing building energy models arein general categorized as: 61 
physics-based models, hybrid models and data-driven models(Li and Wen 2014).Physics-based 62 
modelsemploy thephysical concepts and knowledge of the low level devices and aggregate the 63 
mathematical expressions to model the building system. It heavily relies on domain expertise and often is 64 
computationally prohibitive[4].Hybrid models use simplified physical descriptions combined with 65 
parameter identification algorithms to predict energy consumption. Nevertheless, without a description of 66 
the building geometry and materials, it is difficult to estimate the model parameters.In contrast, the 67 
emerging technology advancements in the energy industrymake it possible to collect massive amounts of 68 
data from sensors and meters, which enable data-driven modeling to unfold the underlying knowledge[5]. 69 
As most industrial, institutional, and commercial buildings built after 2000 include a building automation 70 
systems (BAS), there is a growing interest to mine valuable information and derive additional insights 71 
from data collected.Thedata-driven approach motivates and drives the building energy research in various 72 
aspects including estimation of energy consumption[6]–[8], real-time performance validation and energy 73 
usage analysis[9], and energy saving operational control[3], [10], [11].A significant advantage of the data 74 
driven approach lies in that it considerably reduces the designcycle iteration time for building design and 75 
operations, which includes not only simulation, but also analysis of results and optimization of actions 76 
based on these results. It allows for fast realizations of the design and operation tasks for any building 77 
scenario in an industrial context.Based on the updating cycle and horizon, the load forecast models can 78 
also be categorized into short term load forecasting (STLF), medium term load forecasting (MTLF), and 79 
long term load forecasting (LTLF)[12]. STLF focuses on the load forecasting on daily basis and/or 80 
weekly basis, and MTLF and LTLF are based on monthly and yearly collected data for transmission and 81 
distribution (T&D) planning [13]，and financial planning, which assist with medium to long term energy 82 
management, decision making on the utilities project and revenue management.STLF is important for 83 
real-timeenergy operations and maintenance. For daily operations, system operators can make switching 84 
and operational decisions, and schedule maintenance based on the patterns obtained during the load 85 
forecasting process[14]. To better assist the operations and control strategies development, this study 86 
develops a novel STLF methodology for buildings, which provides accurate load forecasts for daily and 87 
weekly based energy system management.The model, however, could be viably transformed into MTLF 88 
or LTLF, by adding features of economy and land use, and extrapolating the model to longer horizons. 89 

Variousdata-driven methods have been studied and implemented for building load forecasting 90 
including 1) statistical methods such as autoregressive, moving average, exponential smoothing [15], state 91 
space [16], [17], polynomial regression [18], and 2) machine learning methods such as neural 92 
networks[19] and support vector regression [8], [20].Statistical regression models simply build the 93 
correlation between the energy consumption and the simplified influential features such as weather 94 
parameters. These empirical models are developed from historical performance data to train the models. 95 
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Machine learning models are good at building non-linear models and are especially effective on complex 96 
applications.  97 

 A regression-based approach was testedon the peak and hourly load forecasts of the next 24 hours 98 
using Pacific Gas and ElectricCompany’s (PG&E) data [21]. The regressionmodel was thoroughly tested 99 
and concluded to be superior to the existing system load forecasting algorithmsused at PG&E.In another 100 
study, five methods(autoregressive integrated movingaverage (ARIMA) modeling; periodic AR modeling, 101 
an extension for doubleseasonality of Holt-Winters exponential smoothing; an alternative 102 
exponentialsmoothing formulation; and a principle component analysis (PCA) based method) were 103 
compared on 10 load series from 10 European countrieson an hourly interval and 24-hour horizon[22]. 104 
They concluded that the double seasonal Holt-Winters exponential smoothing methodoutperformed the 105 
others. Another interesting study by Ahmed, Atiya, Gayar, & El-Shishiny (2010) explored machine 106 
learning methods. Eight machinelearning models for time series forecastingonthe monthly M3 time series 107 
competition data (around a thousand time series) were investigated. These eight are multilayer perceptron, 108 
Bayesian neural networks, radial basis functions, generalized regressionneural networks, K-nearest 109 
neighbor regression,CART regression trees, support vector regression, and Gaussian processes. They 110 
concluded that the besttwo methods turned out to be the multilayer perceptron and the Gaussian process 111 
regression.Chirarattananon and Taveekun (2004) developed a model for building energy consumption 112 
forecasting based on overall thermal transfer value and concluded that the model does not present good 113 
generalizability on some types of buildings, especially on hotels and hospitals. Yik, Burnett, and Prescott 114 
(2001) predicted the energy consumption for a group of different types of buildings using a number of 115 
physical parameters such as air conditioning system type, year the building was built and geographical 116 
information. The resulting model showed high correlation to the detailed simulation model. One novel 117 
data-characteristic-driven modeling methodology for nuclear energy consumption was proposed in [26], 118 
in which two steps, data analysis and forecasting modeling, were involvedinformulating an appropriate 119 
forecasting model in terms of the sample data’s own data characteristics. Experimental results showed 120 
that “data-characteristic-driven modeling” significantly improves prediction performance compared to all 121 
other benchmark models without consideration of data characteristics. However, only timeseries data 122 
characteristicsandunivariate forecastingmodels wereexplored in this study. One observation from these 123 
extensive studies is model performance varies and is highly dependent on the characteristics of the 124 
building systems, which leads the researchers come to inconsistent conclusions regarding the performance 125 
of various forecasting models. This concurs with what was found by [27]: he thoroughly reviewed 126 
twenty-five years of research and concluded that no algorithm is best for all load forecasting tasks. He 127 
suggested that the identification of which methods should be chosen with respect to the situationsshould 128 
be done viaexperimental studies.  129 

 Notingthat a building system is stochastic, nonlinear and complex[28], research so far has mainly 130 
focused on anapproachof trial-and-error or one-size-fits-all. In the cases where little prior knowledge of 131 
the building systems is available, previous studies either develop multiple models and identify the 132 
outperformer among them, which is computationally expensive and impractical for real-time building 133 
energy management and operations,orsubjectively presume one model fits any type of building, suffering 134 
from high-bias modeling. In shortterm building load forecasting, the main goal is to minimize the 135 
forecasting error with computationally-efficient solutions. Building management control tasks can range 136 
from real-time load forecasting and user behavior analysis to predictive building control.For these tasks, 137 
the meter data are usually generated at a rate ranging from per minute to per hour. Due to the dynamics of 138 
building energy systems and for real-time supervisory purposes, the control and operations should be 139 
updated dynamically by analyzing the time series data. This impedes the trial-and-error modeling 140 
approach in that the computational complexity for constructing multiple models is unaffordable, 141 
especially in the case where data volume is large. In a broader scope, a reduction of the forecasting error 142 
ensures the power systems stabilize in balance and assists power market design, operation, and security of 143 
supply [29]. These drive the need for a general framework for shortterm building load forecasting, which 144 
satisfies both the time constraint driven by real-time building operations and control, and the fidelity 145 
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constraint which calls for high-accuracy load forecasting. The general building load forecasting 146 
framework would be beneficial in dealing with heterogeneous building load forecasting tasks for most 147 
commercial utilities and market participants.Taking into account the above, we develop a Building 148 
Energy Model Recommendation (BEMR) system for shortterm load forecastingmotivated by the meta-149 
learning concept.Meta-learning has gained increasing attention and has been successfully applied in 150 
diverse research fields including gene expression classification [30], failure prediction [31],gold market 151 
forecasting(Zhou, Lai, & Yen, 2012), and electric load forecasting [33], just to name a few. Meta-learning 152 
is a machine learningalgorithmthat explores the learning process and understands the mechanism of the 153 
process, which can be re-used for future learning. The objective is to build a self-adaptive automatic 154 
learning mechanism that connects the meta-data (e.g., the characteristics of the problems) with the model 155 
performance. As a result, the best performing model can be identified via the meta-data directly and thus 156 
significantly saving the model training process.  157 

 Earlier efforts on meta-learning for forecasting mainly focused on rule-based approaches. For 158 
example, [34]weighted four candidate models using 99 derived rulesfrom human experts’ analysis. The 159 
weight of each model is modified based on the features of the time series.  One potential issue of this 160 
approach is the knowledge acquired from human experts may not be easily accessible. Prudêncio & 161 
Ludermir (2004) used a decision tree on a stationary time series with two candidate 162 
algorithms,exponential smoothing witha neural network,and NOEMON, on the M3-competition time 163 
series, for ranking three candidate models: random walk, Holt’s smoothing, and auto-regressive. They 164 
concluded both casestudies revealed satisfactory results, taking into account the quality in the selection 165 
andthe forecasting performance of the selected models. Wang, Smith-Miles, & Hyndman (2009) 166 
generated a decision tree on the induced rules from univariate time series data characteristics, where four 167 
algorithms: Random walk, smoothing, ARIMA, and neural network, were selected as candidates. They 168 
were able to draw recommendations and suggestions on the conceptive, categorical and quantitative 169 
rules.The meta-learning system based on a large pool of meta-features proposed by [37] was shown to 170 
outperform many approaches of the NN3 and NN5 competition entries.Marin Matijaš, Suykens, & 171 
Krajcar (2013) proposed a meta-learning system for load forecasting based on multivariate time series, in 172 
which 65 load forecasting tasks in Europe were tested and lower forecasting errors were observed 173 
compared to 10 well-known forecasting algorithms.  174 

Note that the literature reviewed above all attempt to gain knowledge from time series data to 175 
generate rules which define the relationship between the meta-features and the model performance. While 176 
promising for the problems examined, building systems are inherently nonlinear, diverse and complex 177 
due to the heterogeneity among multiple interconnected factors, e.g., internal factors, social factors and 178 
weather factors [28]. For buildings, especially large and complex ones, simplifications of model 179 
formulations and lack of physical knowledge may lead to poor forecast accuracy. Therefore, the meta-180 
knowledge characterization should not solely be collected from the building’s operational data, such as 181 
energy consumption univariate time series, but also the building’s physical features.  182 
 We conclude that a generalized intelligent system for building energy model recommendation, which 183 
incorporates both building data-characteristic and physical-characteristic meta-features is currently 184 
lacking and this research attempts to fill this gap motivated by the research success from [39].Specifically, 185 
we employ a two-stage meta-learning approach for BEMR. It first trains multiple models on the existing 186 
buildings to obtain the model performance. Next, the features and/or meta-features are derived from the 187 
existing building instances in association with the respective performancesfor making recommendations 188 
on the new building. The BEMR framework developed in this study can be used on development and 189 
selection of models for building energy modeling and forecasting, as well as building optimal operation 190 
and real-time control. 191 

In developing BEMR,the firstnotable challenge is that building data is of high dimension in both the 192 
temporal and spatial domains. Building energy consumption is influenced by many factors: internal 193 
factors such as building structure and physical characteristics, the sub-system components like equipment 194 
schedule and operations on HVAC systems, occupants and their behavior, and external factors such as 195 
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natural environments, weather conditions, and economies. Therefore, meta-features are introduced to 196 
depict the operational data, and the physical features of the buildings are gathered as additional 197 
descriptive knowledge. We hypothesize the inclusion of the heterogeneous features should increase the 198 
generalization of BEMR for diverse buildings in different operating conditions. Next, six statistical and 199 
machine learning data-driven models are explored and included in BEMR: Kriging, support vector 200 
regression (SVR),radial basis function (RBF), multivariate adaptive regression splines (MARS), artificial 201 
neural network (ANN) and polynomial regression (PR). These models are chosen due to their extensive 202 
use in surrogate modeling applications [40] and their good theoretical and experimental performance on 203 
energy system applications [41], [42].The third effort in BEMR is to collect the building instances as the 204 
training sources. Considering that both the building type (internal factors) and climates (external factors) 205 
have effects on energy consumption profiles,48 (8 building types on 6 climate zones) simulated 206 
commercial and residential reference buildings developed by the Department of Energy (DOE)are 207 
collected.Last, ANN is chosen as the meta-learner to develop the associations between the meta-features 208 
derived from the building instances and the model performance so the best model is identified. Three sets 209 
of experiments are conducted using leave-one-out cross validation. The first experiment is to test the 210 
performance of BEMR on regular shortterm daily and weekly forecasting. Experiment results show that 211 
among the 48 buildings, BEMR is able to identify the best model for 43 buildings (accuracy: 90%) and 212 
the difference of the mean ofthe normalized root mean square error (NRMSE)from the ground truth is 213 
within 2%. The second experiment is to validate the robustnessof BEMRwhenthe test data is only 214 
partially covered by the training data, and we call it extrapolation validation. Among the 48 buildings, 40 215 
(accuracy: 83%) correct model recommendations are made and the difference of mean NRMSE from the 216 
ground truth is within 3%. Moreover, the computational cost of the system is significantly lower than 217 
traditional trial-and-error approaches, which decreases forecast time from the order of minutes to 218 
seconds.The third experiment is to validate the proposed framework on a real building case, which is 219 
located in Ankeny, IA. The result shows that the proposed BEMR is capable of making reliable 220 
recommendations for a real building energy forecast. 221 

The paper is constructed as follows: Section 2introduces the proposed methodology; Experiments and 222 
results are discussed in Section3; finally, a discussion of the  conclusion and future work is given in 223 
Section 4. The appendix gives a brief discussion on the data-driven forecasting algorithms. 224 

 225 

2 BUILDING ENERGY MODEL RECOMMENDATIONSYSTEM 226 

 In this research, we propose a Building Energy Model Recommendation System (BEMR) for short-227 
term building energy consumption forecasting.  BEMR is a two stage framework.  As shown inFigure 228 
1,the first stage is to establish the instance repository to connect the learning instances with a forecasting 229 
models’performance; next, both building physical features and operational meta-features are derived and 230 
connected with the model performances so the model recommendation can be made.  231 
 232 
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 233 

Figure 1Framework of Building Energy Model Recommendation (BEMR)System 234 

 235 

2.1 Stage I: Building Learning Instance Repository 236 

 Eight types of commercial and residentialbuildings are selected fromthe DOE simulated reference 237 
buildings whichare identified as the most prevalent building types [43] in the United States. Considering 238 
the significant impact of climate on the energy consumption profile, each building type is simulated 239 
ateach of sixselected locations which correspond to the climate zones discussed in ASHRAE 90.1 -240 
2004[44].  These locations are San Francisco, CA; Boulder, NV; Phoenix, AZ; Houston, TX; Miami, FL; 241 
and Baltimore, MD. As a result, the building repository includes a total of 48 simulated buildings (8 types, 242 
in 6 locations). The corresponding TMY3 (typical meteorological year) weather data sets [45] are adopted 243 
as the weather data source for the simulation models.  244 

2.1.1 Training Data Selection 245 

 The STLF process heavily relies on the weather information and ambient environment.When the 246 
parameters are estimated, the weather information is extrapolated to forecast the load. Much research[4], 247 
[20]has looked at the most suitable features for load forecast problems.  They try to explain the causality 248 
of the electric load consumption. In STLF, the electric load is generally driven by nature and human 249 
activities. Nature is usually represented by weather variables, e.g., temperature and humidity, while the 250 
human activities are usually represented by the calendar variables, e.g., occupancy and business hours. 251 
High-dimensional feature spaces result in unnecessary complication in building forecasting models and 252 
thus impede the optimization process.To alleviate this concern, our features are selected based on the 253 
work ofEisenhower et al.(2012), in which the sensitivity analyses were conducted to identify the most 254 
influential features for the energy output generated from the EnergyPlus simulation models.They were 255 
adopted todevelop the meta-model and the followingoptimization model for energy management 256 
operations. Seventop influential variables, which are all temperature and human activity related, were 257 
selected to build areduced form of meta-models. On the foundation of their work,12 operational features 258 
are initially selected from over 600 features in the simulation models, including (1) outdoor air dry bulb 259 
temperature; (2) outdoor air relative humidity; (3) outdoor air flow rate; (4) diffuse solar radiation rate; (5) 260 
direct solar radiation rate; (6) zone people occupant count; (7) zone air temperature; (8) zone air relative 261 
humidity; (9) zone thermostat cooling set point temperature; (10) building equipment schedule; (11) 262 
building light schedule; (12) HVAC operation schedule. In addition, since periodicity is one main 263 
characteristic in electricity load time series, two categorical variables, Day and Time are added to the 264 
study. Given these 14 features, we then conduct principal component analysis (PCA)[46] to explore the 265 
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multicollinearity among the features for robust forecasting model development. It is observed that feature 266 
11 (building light schedule) and feature 12 (HVAC operation schedule) are highly correlated with feature 267 
9 (zone thermostat cooling set point temperature). Therefore, these two highly collinear variables are 268 
removed from the study. We further assess the correlation between each remaining feature and the 269 
response variable using Pearson’s correlation coefficient. It is observed that all the features are 270 
significantly correlated to the response variable (the absolute correlations are all above the threshold 271 
correlation, 0.195, to reject the null hypothesis that the two variables are not correlated). Note categorical 272 
variables are excluded in the multicollinearity test and the correlation test. Finally, tenbuilding operational 273 
features andtwocategorical variables are selected (Table 1).  274 

 275 

Table 1.TenSelectedBuilding Operational Features and twoCategorical Variables 276 

  Building Variables Variable Type [range] 

1 Outdoor Air Drybulb Temperature  (℃) Continuous 

2 Outdoor Air Relative Humidity Continuous on [0,1] 

3 Outdoor Air Flow Rate Continuous 

4 Diffuse Solar Radiation Rate (W/m2) Continuous 

5 Direct Solar Radiation Rate (W/m2) Continuous 

6 Zone People Occupant Count Integer 

7 Zone Air Temperature  (℃) Continuous 

8 Zone Air Relative Humidity Continuous on [0,1] 

9 Zone Thermostat Cooling SetPoint Temperature (℃) Continuous 

10 Building Equipment Schedule Value Continuous on [0,1] 

11 Day of Week Integer on [1,7] 

12 Time of Day Integer on [1,48] 

 277 
Besides the features discussed above, all the buildings (simulation models) apply typical equipment 278 
control strategies for chillers and fans. In fact, no matter how the subsystems/devices are controlled, their 279 
operations will be reflected in the training data. Our models should be able to capture these operation 280 
characteristics in the model training process.The objective of this study is to provide whole building level 281 
STLF models for building operation and control. As a result, only the building level features are selected. 282 
The detailed sub-system level and device level operation are not studied in this paper. 283 

 For the features, both specification data and lagged data are collected in the training data set. 284 
Specifically, let c be the periodicity of the seasonality, n be the number of lags, andt be the current time 285 
data index, then the specification data indices are t, t - c, t - 2c, while the lagged data indices are t-1, t -286 
2,…, t–n. For example, assume the current time t is 12 pm on a day, possible lagged data indices are 287 
11:30 pm, 11 pm, 10:30 pm, etc. (given data are collected every 30 minutes), and possible specification 288 
data indices are 12 pm in the past few days (c=24 hrs.). This is motivated by the “Similar Days technique” 289 
in [47]that a particular load on the same day of the weekshouldbehave similarly, given similar weather 290 
and other conditions. Several researchers have pointed out the superior performance of specification 291 
models over traditional models which arebuilt solely on lagged data (Crespo Cuaresma, Hlouskova, 292 
Kossmeier, & Obersteiner, 2004). 293 
 294 
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2.1.2 Cross validation 295 

 It is worth noting that in traditionalforecasting, a common practice is to reserve some data toward the 296 
end of each time series fortesting, and to use earlier time series data for training. One potential issue is 297 
that the data are not fullymade use of due to a lack of cross-validation, and the resultingmodel may suffer 298 
from over-fitting. Meanwhile, for time series data it may not be appropriate to directly apply traditional 299 
cross-validation,which randomly splits the data into training and testing datasets.Theoretical problems 300 
with respect to temporal evolutionary effects and data dependenciesare encounteredwhenthe fundamental 301 
assumptions ofcross-validation might be invalidated.Racine (2000) proposes “hv-block” cross-validation 302 
which is asymptotically optimal. It is consistent for temporally dependent observations in the sense that 303 
the probability of selecting the model with thebest predictive ability converges to 1 as the total number of 304 
observations approaches infinity. The basic idea is to place restrictions on therelationship between 305 
thetraining set, validation set, the size of anh-block, and the sample size. We canthereby obtain a 306 
consistent cross-validating model selection procedure for the process. 307 

 308 

 309 

Figure 2“hv-block”Cross-validation Illustration 310 

 As shown inFigure 2, given an observation zi, wefirst remove v observationson either side of itto 311 
obtain a validation set of size2v+1.We thenremove another h observations on either side of thisvalidation 312 
set with the remaining n-2v-2h-1 observations forming thetraining set. Thevalue of v controls the size of 313 
the validation set withnv= 2v+1. The value of h controls the dependence of the training set of sizent= n-314 
2h-nv and the validation set of size nv. For guidance on appropriate selection on h and v, please refer to 315 
[48] for details.  316 
 For illustration, Figure 3showsthe design for cross-validation on a single day test. Take Friday as an 317 
example, and let’s define it as F0, and the unit of lag being a day, with n being 6 days, and c being 7 days. 318 
Therefore, the training data consists of six days of lagged data (Thursday, Wednesday, Tuesday, Monday, 319 
and Sunday on the same week of test data, and Saturday from the previous week) and three days of 320 
specification data (three Fridays from the last three weeks, F1, F2, F3). Based on the“hv-block” cross-321 
validation approach, the training data are cross split into 4 training and validation folds. In each fold, the 322 
size of validation data nv and the block h are set as one day, and the rest of data is kept aside as training 323 
data.  324 

 325 

Figure 3Cross-validation of Training Data Split 326 

 327 
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2.1.3 Forecasting Model Performance Evaluation  328 

 In BEMR, six data-driven models are explored including Kriging, support vector regression 329 
(SVR),radial basis function (RBF), multivariate adaptive regression splines (MARS), artificial neural 330 
network (ANN) and polynomial regression (PR). To make the recommendation, the first step is to 331 
evaluate and validate the model performance using available building energy data. The performance is 332 
measured using Normalized Root Mean Square Error (NRMSE), where 333 

ܧܵܯܴܰ  ൌ ට∑ ሺ௬ି௬ොሻమ
ಿ
సభ

ே
/ሺݕ௫ െ  ሻ, (1) 334ݕ

and y is the true value of the building energy consumption and ݕො is the forecast value. 335 
 In summary, stage I of the BEMR is providing the base repository which consists of 288 models (8 336 
building types, 6 locations, 6 data driven models) and the respective forecasting performance (measured 337 
by NRMSE). This enables the implementation of the meta-learning strategy which is discussed in the next 338 
section.  339 
 340 

2.2 Stage II: Meta-level Learning 341 

2.2.1 Meta-Feature Extraction 342 

 Meta-features, which characterize the entire dataset for meta-level induction learning, arean 343 
abstraction of knowledge extracted from the dataset.Three types of meta-features are devised, including 344 
physical features, statistical features and time series features. Table 2 summarizes the seven physical 345 
features of the buildings. 346 

Table 2BuildingPhysical Features 347 

Feature # 1 2 3 4 5 6 7 
Building Type # of stories Area(m2) Roof Type Wall Type Window Type Cooling Space Type 
Large Office 121 46,320 IEAD2 Mass Fixed Chiller, 

water-cooled 
Non-residential 

Medium Office 3 4,982 IEAD2 Steel Frame Fixed Packaged 
DX3 

Non-residential 

Small Office 1 511 Attic Roof Mass Fixed Packaged 
DX3 

Non-residential 

Supermarket 1 4,181 IEAD2 Mass Fixed Packaged 
DX3 

Non-residential 

Full Service 
Restaurant 

1 511 Attic Roof Steel Frame Fixed Packaged 
DX3 

Non-residential 

Hospital 51 22,422 IEAD2 Mass Fixed Chiller, 
water-cooled 

Residential for
patient rooms 

Large Hotel 61 11,345 IEAD2 Mass Operable in 
guest rooms 

Chiller, air-
cooled 

Residential for
guest rooms 

Midrise 
Apartment 

4 3,135 IEAD2 Steel Frame Operable Packaged 
DX3 

Residential 

1 Plus Basement.  348 
2Built-up flat roof withinsulation entirely above the roof deck. 349 
3 Packaged Direct-expansion (DX) equipment. 350 

 351 
 Other than the sevenphysical meta-features, nine statistical meta-features similar to (Matijaš, 2013; 352 
Lemke & Gabrys, 2010)are derived from the operational featuresfromTable 1 and the energy 353 
consumption data: 354 
(S1) Min: e.g.,the minimum of load over a time period  355 
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(S2) Max: e.g., the maximum of load over a time period 356 
(S3) Mean: e.g., arithmetic average of load over a time period 357 
(S4) SD: e.g., the standard deviation of load over a time period 358 
(S5) Skewness: evaluates the lack of symmetry, taking the load as an example, Yi is the load of timeperiod 359 

i, and തܻ is the mean of the load over a period of time, skewness is derived as: 360 

	 E	ሼሾሺࢅ െ ഥሻࢅ .ࢊ࢚ࡿ ሺࢅሻ⁄ ሿሽ,	 ൌ ,… 	,ࡺ, ሺ2ሻ	  361 

(S6) Kurtosis: evaluates the flatness relative to a normal distribution. Again, taking the load as an 362 
example 363 

	 E	ሾሺࢅ െ ࢅሾሺࡱഥሻሿ/ሺࢅ െ 	,ഥሻሿሻࢅ ൌ ,… 	,ࡺ, ሺ3ሻ  364 

(S7) Q1: e.g., 25% quartile of load, which is the lower quartile of load. 365 
(S8) Q2: e.g., 50% quartile of load, which is the median of load. 366 
(S9) Q3: e.g., 75% quartile of load, which is the upper quartile of load. 367 
 368 
 In addition, considering the building system is dynamic and non-linear, we introduce four time series 369 
meta-features to describe the temporal characteristics of the building energy data. 370 
 371 
(T1) Ratio of local extrema: Ratio of local minima and maxima within a given neighborhood, taking the 372 

load as an example, it measures the percentage of load oscillation. 373 
(T2) Non-linearity: A number of surrogate data is generated from the null hypothesis that the series is 374 

linear, and the derived estimate of the original time series data is compared to the ones generated 375 
from the surrogate data to check the non-linearity [49]. 376 

(T3) Cut-off lag of ACF: The autocorrelation function (ACF) is the collection of the autocorrelation 377 
coefficients, which indicate the covariance between observations with any lag. In this study, a lag of 378 
30 autocorrelation coefficients is calculated.   379 

(T4) Cut-off lag of PACF: Similarly, a lag 30 of the partial autocorrelation function (PACF)is used to 380 
derive the coefficients.  381 

  382 
 As a result, we derive nine statistical meta-features for each of theten building operational data and 383 
the energy consumption data (99 meta-features in total). Additionally, four time series meta-features on 384 
the energy consumption data are derived. With the seven building physical features a total of 110 features 385 
(meta-features) are used for meta-learning.  386 
 387 

2.2.2 Meta-learner  388 

 [50], [51] indicate that a powerful artificial intelligence-based model is more preferable than 389 
traditional statistical models.  Therefore, we use an ANNas the meta-learner, considering correlation 390 
between the meta-features and nonlinear patterns brought by the complexity and heterogeneities of 391 
different building scenarios (noises within meta-features)might impair the modeling power of the learner. 392 
The parameter settings of the meta-learner ANN areas follows: the hidden layer size is tuned within the 393 
range of [10, 20], and the transfer functions are selected between radial basis and log sigmoid. Note that 394 
the proposed meta-featuresare tentatively selected in hoping that they could effectively represent the 395 
dataset. However, the number of features is more than twice the number of problems, which may impair 396 
the predictive power of the meta-learner.  This is known as the “Hughes effects”[52]. As a result, we 397 
propose to use an advanced feature reduction technique to address the curse of dimensionality. 398 
Specifically, singular value decomposition (SVD) is of interest in this research due to its known 399 
performance on noisefiltering and dimensionality reduction.It is a factorization of a real matrix	ܺ ∈ ܴൈ, 400 
݉  ݊, 401 
 ܺ ൌ ܷܸܵ௧,		 (4) 402 
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where ܷ ∈ ܴൈ and ܸ ∈ ܴൈ are orthogonal matrices and ܵ ∈ ܴൈ is a diagonal matrix. A rank-k 403 
(݇ ≪ ݉݅݊	ሺ݉, ݊ሻ) matrix ܥ is defined as the best low-rank approximation of matrix ܺ if it minimizes the 404 
Frobenius norm of the matrix (ܺ െ ܥ ), which is known as the Eckart–Young theorem [53]. This 405 
approximation matrix can be computed by SVD factorization and keeping the first k columns ofܷ , 406 
truncating ܵ to the first k diagonal components, and keeping the first k rows ofܸ௧. This results in noise 407 
reduction by assuming the matrix ܺis low rank, which is not generated at random but has an underlying 408 
structure. 409 
 410 

2.2.3 BEMR Performance Evaluation 411 

 Given the predicted rankings of the six models’ performance from the recommendation system, two 412 
evaluation metrics are introduced to evaluate the meta-learning performance: The Spearman’s rank 413 
correlation coefficient (SRCC) and success rate. 414 
 The Spearman’s rank correlation coefficient [54] is employed to measure the agreement between 415 
recommended rankings and ideal rankings on a forecasting problem. For two samples of size N, the rank 416 
coefficient is computed as  417 

ߩ  ൌ 1 െ 6·
∑ ௗ

మಿ
సభ

ேሺேమିଵሻ
,	 (5)	418 

where ݀ ൌ ݎ െ ݈, andݎ and ݈are the recommended rankand the ideal rank on the ith sample. In this case, 419 
the sample size N is the number of candidate forecasting models. Thevalue of 1 represents perfect 420 
agreement while −1, perfect disagreement. A correlation of 0means that the rankings are not related, 421 
which would be the expected score of the randomranking method. 422 
 The percentage of exact matches between ideal best performer and recommended best performer over 423 
all problems is defined as Success Rate. This is to evaluate the “precision” of the meta-learning 424 
performance. As a matter of fact, in the case of forecasting, users are sometimes more concerned if the 425 
recommended best performer (top 1) matches the ideal one, so only one model is built and computational 426 
efficiency is ensured. Therefore, besides the Spearman’s rank correlation coefficient, the success rateis 427 
alsoproposed to comprehensively evaluate the performance of the meta-learning system. 428 
 429 

3  EXPERIMENTS AND RESULTS 430 

 In this study, we investigate the cooling electricity consumption of buildings in the summer time. 431 
Simulation data are obtained by simulating the reference building energy consumption models for one 432 
month inJuly. The data are generated athalf-hour granularity using DOE’s EnergyPlus[55] simulation 433 
software, which yields 48 data points on each day, 1,488 data points for a month.Three forecasting cases 434 
are tested respectively: (1) Single day and a one week test, (2) an extrapolation test, and (3) a real 435 
building validation test. 436 
 437 

3.1 Experiment I 438 

 In this set of experiments, we test the performance of the proposed BEMR to forecast the building 439 
cooling load for each day of the last week and the whole last week of July, respectively.The single day 440 
test and one week test correspond to short-term load forecasting on a daily basis and a weekly basis. In 441 
the one week test, since the training data is scarce compared to the size of test case, we apply a traditional 442 
validation technique, where the first 80% of the data is used fortraining and the last 20% of the data is 443 
used for validation. 444 

 Figure 4 displaysabar chartof the mean ofthe NRMSE measures of the best forecasting model across 445 
the 48 problems oneach test case.Except for the test on Sunday, the means of the best NRMSE are evenly 446 
distributed from 0.020 to 0.035, while the best performance on Sunday is significantly worse than those 447 
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on other days.To explain this observation, we may refer to the time series plot of the energy consumption 448 
inJuly. See Figure 5(a) for the weekly energy time series plot of thelarge office building in San Francisco, 449 
CA, which shows that the cooling load of Sunday is significantly less than other weekdays. The sudden 450 
decline may be due to the fact thatmost people don’t come to work on weekends thus less cooling load is 451 
required. On the other hand, due to its significantlydifferent pattern from the weekdays, data available for 452 
forecastingthe energy consumptions for Sunday is scarce.This implies more training data with similar 453 
patterns are needed for energy forecasting on weekends. Figure 5(b) shows the time series plot of the 454 
cooling load of the same type of building located in Phoenix, AZ. Compared to plot (a),similar daily and 455 
weekly quasi-periodic behaviors are observed on the energy consumptions, with approximately constant 456 
variance and repeated patterns. However,the cooling load of the large office in Phoenix is on average one-457 
tenth more than that in San Francisco, which is to be expected due to the hot summer in Phoenix. Figure 458 
5(c),which displays the cooling load time series plot of a full service restaurant in Phoenix, AZ, shows a 459 
markedlydifferent behavior. The daily cooling load presents a stable pattern while the weekly periodicity 460 
is not as significant. This is likelydue to the fact thatrestaurants are usually open seven days a 461 
week.Moreover, it is observed that the magnitude of the energy consumption in a restaurant is significant 462 
lower than that in a large office. These validate our proposition that cooling energy consumption is 463 
impacted by combined social factors, weather conditions and building types.  464 

 465 

 466 

Figure 4Test Case I: Bar Chart ofMean of Best NRMSE across 48 Problems on Each Test Case 467 
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 470 

 471 

Figure 5Weekly Cooling Electricity Load (Kwh) Time Series Plot of (a)Large Office in San Francisco, 472 
CA; (b)Large Office in Phoenix, AZ; (c) Full Service Restaurant in Phoenix, AZ. 473 

 474 
 Figure 6 andFigure 7 present the meta-learning performance in terms of success rate and SRCC. 475 
Table 3summarizes the statistics of the above two performance measures. The average success rate 476 
amounts to 90%, which means almost 43 out of 48 problems are correctly assigned with the best model. 477 
Again, Sunday has the lowest success rate due to its different patterns from other days. In another words, 478 
its meta-features are less similar to others’causingdifficulty inmeta-learning.It is also observed that all the 479 
performance measures on the one week test are slightly better than those on the single day, however, 480 
notice that the training cost for the one week forecast is much higher than the single day forecast due to 481 
the higher training size. Be advised that there arealways trade-offs between the computational cost and 482 
model performance, which is worth consideration when selectingthetraining and testing sizes.Please refer 483 
to Racine (2000) for a discussion on training, validation and testing sample size selection for time series 484 
forecasting using “hv-block” cross validation. In addition, the mean SRCC is around 96%, which implies 485 
high agreement between the predicted rankings of the recommendation system and the true rankings of 486 
the six forecasting models. 487 
 488 

 489 

Figure 6Test Case I: Bar Chart ofMeta-learning Success Rate 490 
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 492 

Figure 7Test Case I: Bar Chart ofMeta-learning SRCC 493 

 494 

Table 3Test Case I: Statistics on Meta-learning SRCC, Success Rate and # of Successesacross 48 495 
Problems 496 

Test Date M T W Th F S Sun OneWeek Mean

Spearman Correlation 
Coefficient 

0.954  0.931 0.958 0.963 0.960 0.971 0.945  0.982  0.958 

Success Rate 0.854  0.813 0.917 0.917 0.917 0.917 0.771  0.979  0.900 

# of Successes (out of 48) 41 39 44 44 44 44 37 47 43 

 497 

3.2 Experiment II 498 

 In this set of experiments, we test the extrapolation capability of the proposed BEMR. We sampled 499 
four days: Monday, Wednesday, Friday and Sunday of the last week, toforecast the building cooling load, 500 
while the training data is the building cooling load of the first week. Notice that by observing the energy 501 
data, some of the features of the last week are out of the range covered by the training data of the first 502 
week. For example, the average range of the difference between the maximum and minimum outdoor 503 
temperature among all the buildings in the first week is around [24, 35] ℃, while it is around [22, 39] ℃ 504 
in the last week. The temperature gap in the training data allows us to test the extrapolation capability of 505 
the forecasting models and the recommendation system performance under uncertainties.  506 
 Figure 8 displays abar chart of the mean of the NRMSE measures of the best forecasting model across 507 
48 problems on the second test case. An attractive finding is that the best forecasting performance on 508 
extrapolation is only slightly inferior to regular forecasting.  This can be observed by noting that the 509 
difference between the mean values in Figure 4andFigure 8 is around 0.01. This indicates the best 510 
forecasting model generally is able to give a reliable forecast even though a time gap exists between the 511 
forecast horizon and the energy data at hand. Therefore, energy users and utilities can have confidence in 512 
the extrapolation predictions to pre-plan and make decisions in advance, which enables energy savings 513 
and cost reductions.Figure 9 displays a box plot of the mean of the NRMSE on the single day, one week 514 
and extrapolation tests across six forecasting algorithms. It is observed that the variance of the mean 515 
NRMSE for the tests on one day tests of Friday, Saturday, Sunday and the Sunday extrapolation are 516 
greater than other days, which indicates that the performance of different forecasting models vary 517 
significantly to each other on these days. This may be caused by the dates beingweekends, or quasi-518 
weekend (Friday), when the energyusage patterns are different from regular weekdays. 519 
  520 
 521 
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 523 

Figure 8Test caseII: Bar Chart of Mean of Best NRMSE across 48 Problems on Each Test Case 524 

 525 

 526 

Figure 9 Box Plot of Mean of NRMSE on Test Cases I&II 527 

 Figure 10 and Figure 11 present the meta-learning performance in terms of success rate and SRCC on 528 
the second test case. Table 4 summarizes the statistics of the above two performance measures. Similar to 529 
the comparison result on the best forecasting model performance, all three performance measures are 530 
slightly inferior to regular forecasting. The mean SRCC still remains above 94%, and the average 531 
successful recommendations are almost 40 out of 48, which is acceptable. Table 5 gives a comparison 532 
between the ground truth and the recommendation system of the three test cases based on the mean of the 533 
best NRMSE across 48 problems. It is shown that the average discrepancy between the recommended 534 
model and the true best model performance is within an error of 0.02, which reveals the proposed system 535 
is highly capable of making correct recommendations. 536 
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 538 

Figure 10Test caseII: Bar Chart ofMeta-learning Success Rate 539 

 540 

 541 
Figure 11Test case II: Bar Chart ofMeta-learning SRCC 542 

 543 

Table 4Test caseII:Statistics on Meta-learning SRCC, Success Rate and # of Successes across 48 544 
Problems 545 

Test Date M_ext W_ext F_ext Sun_ext Mean 

Spearman Correlation Coefficient 0.924 0.950  0.965 0.925  0.941  

Success Rate 0.833 0.833  0.875 0.750  0.833  

# of Successes(out of 48) 40 40 42 36 40 

 546 

Table 5Comparison between Ground Truth and Recommendation System on Mean of Best NRMSE 547 
across 48 Problemson Each Test Case 548 

Test Date M T W Th F S 

True Best 0.025 0.026 0.033 0.025 0.024 0.035 

Recommend 0.026 0.029 0.034 0.026 0.025 0.036 

Test Date Sun OneWeek M_ext W_ext F_ext Sun_ext 

True Best 0.082 0.021 0.043 0.031 0.030 0.088 
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Recommend 0.092 0.021 0.045 0.035 0.031 0.092 

 549 
 Table 6summarizes the mean and standard deviation of the computational cost (in seconds) of the six 550 
models on an Intel i5 CPU 16G computer. As seen, PR is the most computationally efficient model, 551 
followed by RBF and Kriging. The least efficient algorithm is SVR, which takes more than 5 minutes on 552 
average to solve each problem. The variance of the computational costs among different models implies 553 
that a trial-and-error method is not an efficient approach for solving heterogeneous energy forecasting 554 
problems, especially when the number of problems at hand is large and the problems have different levels 555 
of complexityand heterogeneities. By summing the solution times of all six models, it is easy to see why a 556 
trial-and-error approach for these types of problems is costly.  By introducing the automatic model 557 
recommendation using a meta-learning approach, the computational cost for forecasting reduces from an 558 
order of minutes to seconds. 559 
 560 

Table 6Mean and Standard Deviation of the Computational Cost (in seconds) of the Six Models across 48 561 
Problems 562 

Statistics Kriging SVR RBF MARS ANN PR 

Mean 2.75 324.94 0.68 202.79 10.44 0.28 

Std. 0.27 151.29 0.08 119.22 1.50 0.08 
 563 

 The promising performance indicates that the proposed ANN based meta-learning recommendation 564 
system is capable of accurately recommending not only the best model but also the ranking of the 565 
models.Thisprovides more freedom for users to select either one or several models, such as building an 566 
ensemble of multiple models[56]. Moreover, it can be concluded that the meta-learning approach can 567 
achieve both high prediction accuracy and high computational efficiency on heterogeneous forecasting 568 
problems. 569 
 570 

3.3 Experiment III 571 

 In this experiment, we test and validate the proposed BEMR using a real commercial building at the 572 
Iowa Energy Center. The building operation data is acquired from ASHRAE 1312 [57].The target is a 573 
small size commercial building with an experiment area and common office area. The total floor space of 574 
this building is 855.5 m2. The area of each test room is 24.7 m2. The percentage of exterior window area 575 
to exterior wall area is 54 % for each exterior zone. A built-up roof with insulation is constructed above 576 
the roof deck. The zone thermometers are located on the center of the internal wall (shown as the blue box 577 
on the floor plan in  578 
 579 



18 
 

 580 
Figure 12). The location of the sensor is 1.21 meters from the floor. Two Variable Air Volume (VAV) air 581 
handling units (AHU) are used for the two experiment systems (A and B) in the experiment area. Both of 582 
these AHUs are equipped with dual (supply and return) variable speed fans and are operated similarly to 583 
that in a typical commercial building. More details about this building can be found at [58]. In the 584 
ASHRAE 1312 experiment, both AHU-A and AHU-B were used. However, AHU-A was used for faulty 585 
test and AHU-B was used for regular operation test. As a result, the summer (August and September) test 586 
data from AHU-B (system B) was used in this study. Similar to the subsystem operation schemes in 587 
experiment I and II, the chilled water temperature set point was 7.2 °C, the supply air temperature set 588 
point was 12.7 °C, the supply air pressure set point was 9.6 kPa, and the zone temperature heating and 589 
cooling set points at occupied hours (8 am to 6 pm) were 22.2 °C and 21.2 °C, respectively. The HVAC 590 
system was shut down during unoccupied hours.  591 

 592 

 593 
Figure 12Energy resource station at Iowa Energy Center[58] 594 

 595 
We follow the exact same experimental settings, including the collection of operational features, the 596 
derivation of the meta-features, the training data selection and cross-validation. Again, the validation is 597 
conducted on both a single day test and one week test. Since the measurement data is collected between 598 
August and September, while the BEMR is built based on July, this could be viewed as an extrapolation 599 
test. The performance rankings of the six forecasting model along with the predicted rankings from 600 
BEMRare provided in Table 7.  601 
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Table 7Performance Rankings (T) of the Six Forecasting Models and the Predicted Rankings from BEMR 602 
(B) on Single Day and One Week Tests 603 

Model Mon Tue Wed Thu Fri Sat Sun One Week 
 T B T B T B T B T B T B T B T B 

Kriging 1 1 2 2 2 2 2 1 1 1 3 2 3 4 1 1 
SVR 5 5 5 5 6 5 5 4 3 4 2 3 1 2 6 6 
RBF 4 3 4 3 5 6 4 5 5 6 6 6 6 5 5 5 

MARS 2 6 6 6 4 4 3 3 6 5 1 1 3 3 1 2 
ANN 6 4 3 4 1 1 6 6 2 2 5 5 2 1 4 3 
PR 2 2 1 1 3 3 1 2 3 3 3 4 5 6 3 4 

 604 
The statistics show that 2 out of 8 test cases (Thursday and Sunday) are assigned a sub-optimal model, 605 
while the assigned models are both ranked second according to the ground truth, which implies the 606 
BEMR generally provides reliable recommendations. In conclusion, the validation experiment results on 607 
the real building indicate that the proposed BEMR is able to assist real building energy forecasting tasks 608 
with reliable and high quality solutions. 609 
 610 

4 DISCUSSION,CONCLUSION AND FUTURE WORK 611 

 This paper is motivated to develop a computationally efficient data-driven approach to quickly 612 
identify appropriate algorithmsfor building energy load forecasting.We propose a recommendation 613 
system for short-term building forecasting model selection based on a meta-learning technique. This is an 614 
extensively studied automatic learning algorithm applied to meta-data in machine learning experiments. 615 
We propose various meta-features which characterize the building energy data: building electricity load 616 
time series features, building operational features and physical features. An Artificial Neural Network is 617 
applied to model the relationship between the meta-features and the ranking of each model derived from 618 
the performance on forecasting. In addition, due to the high dimensionality of the proposed meta-features, 619 
an advanced feature reduction technique, Singular Value Decomposition, is applied on the meta-feature 620 
space to improve the meta-learning performance and reduce computational cost. The resulting high 621 
spearman’s ranking correlation coefficient and success rate on the two test cases: single day and one week, 622 
and the extrapolation test, indicate the successful implementation of the recommendation system.  623 
 To demonstrate the applicability of the proposed recommendation system, 48 benchmark 624 
buildingshave been tested, including 8 types of typical buildingslocated across 6 climate zones coveringa 625 
wide range of building profiles. One real building is used to validate the system for assessment of the 626 
applicability and extensibility to real problems. To evaluate the forecasting capabilityof the proposed 627 
framework, we have also implemented various popular data-driven forecasting methods in the literature, 628 
including Kriging, SVR,RBF, MARS, ANN and PR. Regarding the practical advantages of this 629 
framework and its combination with energy supplies in the domain of building energy and power 630 
systems, the proposed recommendation system can be used to facilitate the development of a building 631 
energy expert system for real-time building operations management, decision making and 632 
support.Comparing this technique to the traditional approach, it is concluded that the meta-learning 633 
approach can achieve both high prediction accuracy and high computational efficiency on various genres 634 
of building forecasting problems.It augmentsthe traditional trial-and-error meta-modeling method in that 635 
itenablesan automated and optimizedmodeling process which requires littleexpert involvement and 636 
minimizes excessive computations. Based on past experience, the recommendation system emulates the 637 
human’s decision-makingability, which makes reasonable decisions and efficient calculations to solve 638 
complex problems. Specifically, it consists of a two stagelearning process: the knowledge base is first 639 
constructed, which accumulates facts and rules about the problem domain, andthen an inference engine is 640 
builtto apply the rules from the known facts anddeduce new facts. This work provides practical guidelines 641 
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in the design, development, implementation, and testing of a forecasting recommendation system for 642 
various short-term building energy forecasting problems. Specifically,it can help non-experts with 643 
forecasting model selection.Due to these theoretical contributions and advantages, we recommend its use 644 
to facilitate everyday building energy industrial applications and operationsto reduce the cost and improve 645 
modeling and operation efficiency. 646 
 In summary, the originality of this paper isthree-fold: 647 
 The first contribution is the implementation of a two-stage meta-learning framework on varioustime-648 

series problems in the domain of building energy modeling. 649 
 The secondcontribution stems from the proposed generalized automatic meta-learning based expert 650 

system which requires little human involvementto support forecasting model recommendation. 651 
 To the best of our knowledge, this is the first recommendation system motivated from the machine 652 

learning domain for shortterm building forecasting based on various meta-features derived from both 653 
of building data-characteristics and physical-characteristic features. 654 

 We acknowledge that conducting our analysis in the scope of STLF is a limitation of this study. 655 
However,the proposed approach adequately demonstrates the applicability of the recommendation system 656 
on energy forecasting for various types of buildings across different climate zones. We envision that the 657 
STLF framework is viably transformable to MTLF and LTLF by adjusting the operational features and 658 
meta-features, and we reserve this for our future work.  659 
 660 

APPENDIX DATA-DRIVEN MODELING TECHNIQUES 661 

 The data-driven modeling techniques build models solely on historical data which is represented by 662 
the time-delay variables, e.g., temperature, humidity, and past energy consumption data, that form the 663 
feature vectors. This makes the forecasting process more adaptive to different types of buildings and 664 
reduces human involvement for model adjustments [6].Six selected data-driven modeling techniques, 665 
including four of statistical modeling methods, Kriging, RBF, MARS and PR, and two machine learning 666 
methods, SVR and ANN, are reviewed in this section. Notice in each method thatwe are building a model 667 
of the building energy consumption based on the building’soperational features. 668 

Kriging 669 

Kriging (also known as Gaussian process regression) is an interpolation method that assumes the 670 
simulation output may be modeled by a Gaussian process. It gives the best linear unbiased prediction of 671 
simulation output not yet observed. It generates the prediction in the form of a combination of a global 672 
model with local random noise: 673 

ሻ࢞ሺ࢟  ൌ ࢼሻ࢞ሺࢌ   ሻ, (1) 674࢞ሺࢆ

where x is the input vector, ߚis the weight vector, and Z(x) is a stochastic process with zero mean and 675 
stationary covariance of 676 

,ሻ࢞ሺ܈ൣ࢜ࢉ  ൯൧࢞൫܈ ൌ ,࢞൫ࡾ࣌  ൯, (2) 677࢞

where ߪଶ is the process variance, ܴሺݔ,  ሻ is an n by n correlation matrix where n is the sample size of 678ݔ
the training data. R	 is usually depicted by a Gaussian correlation function, ݁ݔሺെߠሺݔ െ  ሻଶሻ with 679ݔ
parameter680  .ߠ 

Support Vector Regression 681 

Support Vector Regression (SVR) is analogous to support vector classification, which attempts to 682 
maximize the distance between two classes of data by selecting two hyperplanes to optimally separate the 683 
training data. The mathematical form of SVR is: 684 
 685 
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ሻ࢞ሺࢌ  ൌ 〈࣓ ∙ 〈࢞  	,࢈ (3) 686 

where ߱ is the norm vector to the hyperplane and ܾ/‖߱‖determines the offset of the hyperplane from the 687 
origin. The goal is to find a hyperplane that separates the data points optimally without error and separates 688 
the closest points with the hyperplane as far as possible. Thus, it can be constructed as an optimization 689 
problem: 690 

min1/2|߱|ଶ	691 

	 s.t.൜
࢟ െ 〈࣓ ∙ 〈࢞ െ ࢈  ࢿ
〈࣓ ∙ 〈࢞  ࢈ െ ࢟  ࢿ

,	 (4) 692 

According to the duality principle, the nonlinear regression problem is given by: 693 

ሻ࢞ሺࢌ  ൌ ∑ ሺࢻ
∗ െ ሻࢻ


ୀ ࢞〉 ∙ 〈࢞  	.࢈ (5) 694 

where ߙ
∗  and ߙ  are two introduced dual variables, and ݇〈ݔ ∙ 〈ݔ  is a kernel function, e.g. Gaussian 695 

kernel. 696 

Radial Basis Function 697 

Radial Basis Function (RBF) is used to develop interpolation on scattered multivariate data. A RBF is a 698 
linear combination of a real-valued radially symmetric function,∅ሺݔሻ, based on distance from the origin, 699 

 ݂ሺݔሻ ൌ ∑ ߠ

ୀଵ ∅ሺ‖ݔ െ  ‖ሻ. (6) 700ݔ

where ߠ  is the unknown interpolation coefficient determined by the least-squares method, n is the 701 
number of sampling points and ‖ݔ െ  702 ݔ ‖ is the Euclidean norm of the radial distance from design pointݔ
to the sampling point ݔ. 703 

Multivariate Adaptive Regression Splines 704 

Multivariate Adaptive Regression Splines (MARS) is a form of regression analysis introduced by 705 
Friedman(1991). A set of basis functions, defined as constant, hinge function, or the product of two or 706 
more hinge functions, are combined in the weighted sum form, to be the approximation of the response 707 
function. A MARS model is built with generalized cross validation regularization in a forward/backward 708 
iterative process. The general model of MARS can be written as: 709 

 ݂ሺݔሻ ൌ ߛ  ∑ ሻݔ݄ሺߛ

ୀଵ ,	 (7)	710 

where	γ୧	is	 the	 constant	 coefficient	 of	 the	 combination whose value is jointly adjusted to give the best 711 
fit to the data, and the basis function ݄, can be represented as: 712 

 ݄ሺݔሻ ൌ ∏ ሾݏ,·൫ݔ௩ሺ,ሻ െ ,൯ሿାݐ


ୀଵ .	 (8)	713 

where ܭ is the number of splits given to the mth  basis function, ݏ,=േ1 indicates the right/left sense of 714 
the associated step function, ݒሺ݇,݉ሻ  is the label of the variable, and ݐ,  represents values (knot 715 
locations) of the corresponding variables. The superscript q and subscript + indicate the truncated power 716 
functions with polynomials of lower order than q.  717 

Artificial Neural Network 718 

Artificial Neural Network (ANN) [60] is a computational model inspired by an animal's central 719 
nervous system. It is apt at solving problems with complicated structures. Due to its promising results in 720 
numerous fields, ANN has been extensively applied in stochastic simulation modeling (Fonseca, 721 
Navaresse, & Moynihan, 2003; Nasereddin & Mollaghasemi,1999). An ANN model typically consists of 722 
three separate layers: the input layer, the hidden layer(s), and the output layer. The neurons across 723 
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different layers are interconnected to transmit and deduce information. A typical ANN with three layers 724 
and one single output neuron has the following mathematical form: 725 

 ݂ሺݔሻ ൌ ∑ ߱ߜሺ∑ ሻݔሺߜݓ
ூ
ୀଵ  ሻߙ


ୀଵ  ߚ  	.ߝ (9)	726 

where ݔ  is a k-dimensional vector, the input unit represents the raw information that is fed into the 727 
network, ߜሺ∙ሻ is the user defined transfer function, ݓ is the weight factor on the connection between the 728 
ith input neuron and the jth hidden neuron, ߙ  is the bias in the jth hidden neuron, ߱  is the weight on 729 
connection between the jth hidden neuron and the output neuron, ߚ is the bias of the output neuron, ε is a 730 
random error with a mean of 0, and I and J are the number of input neurons and hidden neurons. In 731 
supervised learning, the output unit is trained to simulate the underlying structure of the input signals and 732 
response. The trained structure is depicted by several parameters, the weights on each connection, the 733 
biases, the number of hidden layers, the transfer functions, and the number of hidden nodes in each 734 
hidden layer.  735 

Polynomial Regression 736 

Polynomial Regression (PR) is a variation of linear regression in which an nth order polynomial is 737 
modeled to formulate the relationship between the independent variable x and the dependent variable y. 738 
PR models have been applied to various engineering domains such as mechanical, medical and industrial 739 
(Barker et al., 2001;Greenland, 1995; Shaw et al., 2006). A second-order polynomial model can be 740 
expressed as: 741 

 ݂ሺݔሻ ൌ ߚ  ∑ ݔߚ

ୀଵ  ∑ ଶݔߚ


ୀଵ  ∑ ∑ ݔߚ ݔ  ߳	 ሺ10ሻ	742 

where ߚ is the constant coefficient, ݇ is the number of variables,   is an unobserved random error with 743 
zero mean, PR models are usually fit using the least squares method.  744 
Extensive applications on forecasting using the reviewed techniques canbe found in [5], [18], [65], [66]. 745 
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