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Abstract: Remote communities such as rural villages, post-disaster housing camps, and military
forward operating bases are often located in remote and hostile areas with limited or no access to
established infrastructure grids. Operating these communities with conventional assets requires
constant resupply, which yields a significant logistical burden, creates negative environmental impacts,
and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel
generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote
community planners can mitigate these negative impacts by selecting sustainable technologies that
minimize resource consumption and emissions. However, the alternatives often come at a higher
procurement cost and mobilization requirement. To assist planners with this challenging task, this
paper presents the development of a novel infrastructure sustainability assessment model capable of
generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle
costs over the community’s anticipated lifespan. Model performance was evaluated using a case
study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and
48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist
planners in identifying optimal combinations of infrastructure alternatives that minimize negative
sustainability impacts, leading to remote communities that are more self-sufficient with reduced
emissions and costs.

Keywords: infrastructure; sustainability; environmental impact; life-cycle cost; optimization;
remote community

1. Introduction

Remote communities such as rural villages, post-disaster housing camps, and military forward
operating bases (FOB) are often detached from established infrastructure grids and require a constant
resupply of resources. This resource dependence presents sustainability challenges such as a significant
logistical burden, negative environmental impacts, and increased costs [1,2]. In one example,
a 2000-member isolated village in northern Canada relying solely on diesel generators required
2.95 million liters of fuel per year to support its power requirement [3]. The fuel cost $8.6M USD and
emitted 8500 tons of CO2—the annual equivalent of nearly 1700 passenger vehicles.

For the purposes of this research effort, sustainability refers to the planning and implementation
of conservation measures and infrastructure alternatives that reduce reliance on fossil fuels, conserve
water, minimize waste streams, abate negative environmental impacts, and promote self-sufficient
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operations [4]. While this definition addresses only one portion of a broader sustainability challenge at
remote communities, it enables the quantification and mitigation of negative environmental impacts
and costs resulting directly from infrastructure decisions. Planners may choose to enhance the proposed
objective function by adding measures of sustainability or adapting the function to be more reflective of
the community in question. In the present application, power production, water production, and waste
management systems are of primary concern, due to their direct impact on sustainability objectives and
logistical requirements for resources such as fuel, water, and waste [5,6]. Remote community planners
have the opportunity to select technologies that will reduce the negative sustainability impacts [7], but
such alternatives are often bulky to transport and expensive to procure [8]. Both the environmental
impact and the cost involved with mobilizing equipment-based components can negatively impact
sustainability objectives based on the item’s size, weight, and mode of delivery. Accordingly, planners
are faced with the challenging task of selecting infrastructure alternatives that optimize initial and
operational tradeoffs between environmental and economic performance.

A number of studies have been conducted that (1) quantify the environmental impact of
infrastructure; (2) identify tradeoffs between the environmental and economic impact of infrastructure
alternatives; and (3) optimize tradeoffs between sustainability objectives for remote communities. First,
various research efforts have quantified the environmental sustainability of infrastructure, including
power production methods [9–11]; water production methods [12,13]; wastewater management
systems [14,15]; and solid-waste management systems [16–18]. These efforts quantified environmental
sustainability through various indicators, such as greenhouse gas (GHG) emissions, pollution emissions,
energy consumption, embodied emissions, and global warming potential. These indicators can be
quantified at a static point in time, such as embedded emissions of materials, or over the infrastructure’s
lifetime via a life-cycle assessment.

Second, additional studies identified tradeoffs between the environmental and economic
sustainability of infrastructure alternatives. For example, Karatas and El-Rayes [19] utilized GHG
emissions, water consumption, and initial cost metrics to assess the integration of green building
measures and fixtures into housing units, generating optimal tradeoffs between environmental impact
and cost. Alternatively, Ozcan-Deniz et al. [20] utilized a global warming potential metric to optimize
the selection of construction activities, thereby minimizing project time, cost, and environmental impact.
Additional economic metrics include energy consumption, transportation requirements, operating
costs, and life-cycle costs [21].

Third, other research efforts optimized tradeoffs between sustainability objectives for remote
communities. Optimization is the process by which one determines the best solution to a problem based
on a set of constraints [22]. When this process includes just one objective, the intent is to determine one
ideal solution. A multi-objective optimization problem, however, occurs when two or more objectives
must be enhanced simultaneously. Often, these objectives are in direct conflict with each other, requiring
the researcher to identify optimal tradeoffs between objectives. For example, El-Anwar et al. [23]
identified infrastructure decision impacts on the prolonged use of isolated, post-disaster housing camps.
The authors produced optimal housing construction decisions, minimizing environmental, social
welfare, economic, and public safety impacts. Conversely, Poreddy and Daniels [24] and Putnam et al. [8]
analyzed military sites, investigating resource requirements as a proxy for sustainability. The first effort
utilized a comprehensive systems-based approach to quantify a site’s resource requirements, such as
electricity, fuel, water, maintenance hours, and geographical footprint. The authors proposed optimal
site layouts that maximized operational efficiency and minimized logistical requirements. The second
effort optimized the selection of infrastructure technologies to minimize mobilization investments
and daily resupply. By quantifying the logistical impact of equipment and the volume of fuel, water,
and waste transported on- and off-site each day, the work identified infrastructure alternatives that
improved personnel safety and minimized transportation expenses. Filer and Schuldt [25] expanded
Putnam’s approach to quantify the impact of an infrastructure alternative’s resource consumption
and logistics on the environment. While the authors computed GHG emissions and total cost for
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various infrastructure systems, they failed to fully consider the impact of transportation requirements
or establish optimal tradeoffs between competing objectives. This paper is a follow-on effort that
expands transportation considerations, enhances emissions calculations, incorporates decision-maker
priorities, and optimizes sustainability tradeoffs over time.

Despite the significant contributions of the aforementioned research studies, there has been
no known research that has optimized sustainability in remote communities. That is, there lacks
a detailed investigation that optimizes tradeoffs between the environmental and economic performance
of remote community infrastructure alternatives while considering initial and recurring logistical
requirements. To address this limitation, this paper presents the development of an innovative model
that is capable of optimizing tradeoffs between the environmental and economic sustainability of
remote community infrastructure.

The objective of this paper is to present an infrastructure sustainability assessment model that
quantifies the tradeoffs between environmental impacts and life-cycle costs of remote communities.
The model is intended to assist planners in the difficult task of analyzing and comparing all feasible
combinations of infrastructure alternatives in order to construct sites with reduced costs, emissions,
and resupply requirements. The following sections of this paper describe: (1) developing metrics to
measure the performance of the model’s two competing objectives; (2) formulating the model’s objective
function; (3) identifying the model’s required input data; and (4) testing the model’s performance via
a case study.

2. Methodology

2.1. Decision Variables

The decision variables utilized in the present model are designed to represent feasible alternatives
for enhancements to remote community infrastructure categories that impact sustainability objectives.
The model considers various infrastructure alternatives, i, within infrastructure categories, j. The present
model considers 11 infrastructure categories, including facility insulation, billeting, power production,
water production, food preparation, refrigeration, laundry services, hygiene services, latrines,
wastewater management, and solid waste management. These infrastructure categories were selected
due to their direct impact on the key resource categories of fuel, water, wastewater, and solid waste.
Each alternative is represented by an integer value, i. The model incorporates these alternatives
into J infrastructure categories, where each alternative within category j fulfills the same support
requirement. Site designers may select any one alternative per infrastructure category, so long as the
same level-of-service constraint is achieved. A benefit of the model is its flexibility; it can be adapted
for any number of infrastructure alternatives or categories.

For example, Figure 1 depicts the flexibility a planner has to select either an expeditionary or
high-efficiency latrine system alternative. One alternative must be chosen to meet the community’s
latrine requirement. The latrine infrastructure category is of concern due to its impact on all four
resource categories, including fuel consumption, water consumption, wastewater production, and solid
waste production.
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Figure 1. Example of decision variables impacting resource categories.

2.2. Metric Identification

The model was designed to minimize negative sustainability impacts by generating optimal
tradeoffs between two competing objectives: (1) minimizing negative environmental impacts; and (2)
minimizing life-cycle cost.

2.2.1. Environmental Impact Metric

The model’s first metric is formulated to quantify the impact that remote community infrastructure
has on the surrounding environment. While there are various approaches to quantifying environmental
impact, greenhouse gas (GHG) emissions are of primary concern due to their influence on climate
change. Of the GHGs, carbon dioxide (CO2) is the largest direct source of radiative forcing from
human activities, and it is, therefore, the baseline by which global warming potential is defined [26,27].
The environmental impact of an infrastructure alternative over its lifespan is calculated as the sum of its
initial environmental impact (IEI) and its ongoing daily environmental impact (DEI) (metric tons CO2e).
Accordingly, the environmental impact (EIp) of a portfolio of alternatives is a summation of each
alternative’s EI, as shown in Equation (1). Each portfolio represents some combination of infrastructure
alternatives where one alternative, i, is selected for each infrastructure category, j. The quantity of
portfolios represents all possible combinations of alternatives, calculated as a product of the number of
available infrastructure alternatives (I) within each infrastructure category (J)

minimize EIp(t) =
J∑

j=1

(
IEIi j + tDEIi j

)
(1)

where

EI = environmental impact of infrastructure portfolio (tons CO2e);
IEI = initial environmental impact of infrastructure alternative (tons CO2e);
DEI = daily environmental impact of infrastructure alternative (tons CO2e/day);
t = time (days);
i = infrastructure alternative;
j = infrastructure category;
J = total infrastructure categories; and
p = portfolio of alternatives: one alternative per infrastructure category.
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An alternative’s IEI accounts for the impact of its delivery to the site via air, rail, or sea, as shown
in Equation (2)

IEIi j = rmodewi jdmode (2)

where

r = emissions rate of transportation mode (tons CO2e/ton cargo/km) [28];
mode = mode of transportation (air, land, or sea);
w = weight of infrastructure alternative (tons); and
d = transportation distance (km).

The DEI of infrastructure alternative i in category j may be calculated as a function of its daily
impact due to each resource category and the resulting transportation requirement, shown in Equation
(3). The resource categories of consideration are fuel consumption, water consumption, wastewater
production, and solid waste production. The transportation requirement resulting from these resources
is further complicated by the tendency of remote communities to utilize readily available, inefficient
vehicles to transport resources on- and off-site at varying distances (d). Therefore, Equation (3) also
accounts for fluctuations in vehicle capacity (c) and fuel economy (f)

DEIi j =
4∑

res=1

(
vres

i j rres
i j

)
+ r f uel

4∑
res=1

vres
i j

cres ·
dres

f res

 (3)

where

v = volume of resources (kg/day or L/day);
res = resources, 1: fuel, 2: potable water, 3: wastewater, and 4: solid-waste;
r = emissions rate of resource (tons CO2e/kg or tons CO2e/L) [29];
c = carrying capacity of vehicle (kg or L); and
f = efficiency of vehicle transporting resources (km/L).

2.2.2. Cost Metric

The second metric was formulated to compute an infrastructure portfolio’s life-cycle cost (Cp)
from procurement through termination of operations via Equation (4)

minimize Cp(t) =
J∑

j=1

(
ICi j + tDCi j

)
(4)

where

C = life-cycle cost of infrastructure portfolio ($);
IC = initial cost of alternative ($); and
DC = daily cost of alternative ($/day).

An alternative’s IC is a function of its procurement cost (PC) and the cost to transport it to
the community’s location, as shown in Equation (5) The transportation cost is dependent upon the
operating cost (OC) of the transportation method and the number of trips required

ICi j = PCi j + OCmode
i j dmode

i j

wi j

cmode
i j

(5)

where

PC = cost to procure alternative or initiate service ($); and
OC = operating cost of transportation mode ($/km).
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While most infrastructure alternatives have an associated equipment procurement cost, many
non-infrastructure alternatives do not. Rather, these have resource purchase costs and daily service
fees. Therefore, an alternative’s DC is computed as a function of daily service costs (SC) and resource
transportation costs, as shown in Equation (6). Transportation costs are dependent upon the capacity
(c) and efficiency (f) of the vehicle transporting each resource type, as well as the distance traveled
(d). Further, cost structures are variable. Daily transportation costs may be considered separately, or
they may be combined into the service cost. While the contract type shown here is relatively simple,
planners have the ability to easily insert their own contract structures

DCi j =
4∑

res=1

(
vres

i j SCres
i j

)
+ SC f uel

4∑
res=1

vres
i j

cres ·
dres

f res

 (6)

where SC = service or purchase cost of resource ($/kg or $/L).

2.3. Objective Function

Finally, minmax normalization is applied to the metrics from Equations (1) and (4), as shown in
Equations (7) and (8), respectively. This action transforms sustainability metric data into unitless values
ranging from zero to one, where zero represents the minimum EI or C of all available infrastructure
portfolios and one represents the maximum. The normalizing function enables variables of dissimilar
units to be computed into a unitless index

EInorm
p (t) =

EIp(t) −min(EI)

max(EI) −min(EI)
(7)

Cnorm
p (t) =

Cp(t) −min(C)

max(C) −min(C)
(8)

where

EInorm = normalized environmental impact of an infrastructure portfolio; and
Cnorm = normalized cost of an infrastructure portfolio.

Additionally, weights, wtEI and wtC, are identified to represent the priority a decision-maker
places on each metric in the final optimization function. Both are represented by percentages that
must sum to 100 percent. Finally, the objective function shown in Equation (9) is utilized to calculate
an infrastructure portfolio’s negative sustainability impacts, SIp, and identify an optimal portfolio for
any time, t, based on the decision-maker’s priorities. For the purposes of this research effort, the optimal
solution is defined as that portfolio which minimizes negative impacts on sustainability objectives.

minimize SIp(t) = wtEIEInorm
p (t) + wtCCnorm

p (t) (9)

where

wtEI = importance weight of environmental impact;
wtC = importance weight of cost; and
SI = negative sustainability impacts of an infrastructure portfolio.

3. Model Input Data

Remote community planners must input a number of community features, planning factors,
and infrastructure alternative characteristics, as outlined in Table 1. Community features describe
the community’s location and determine support requirements. Planning factor data establishes the
site’s total resource requirement, which is dependent upon location and number of personnel. Finally,
feasible alternatives must be identified for each infrastructure category, such as power production,
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water production, wastewater management, and solid-waste management. For each infrastructure
alternative, characteristic data determine the alternative’s resource consumption, waste production,
transportation requirement, cost, and environmental impact. Life-cycle boundary conditions were
implemented such that negative sustainability impacts were considered from the time of an alternative’s
mobilization through operation, while impacts from manufacturing and infrastructure retirement
were excluded.

Table 1. Model input data.

Input Category Inputs

Community Features

(1) required personnel (persons)
(2) environment (e.g., desert, temperate, or tropical)

(3) duration (days)
(4) equipment delivery method (ground, air, or sea)

(5) equipment delivery distance (km)
(6) distance to local services (km)

(7) transportation method efficiencies (km/L)
(8) transportation method capacities (kg or L)

Planning Factors

(1) power consumption (kW/person/day)
(2) potable water consumption (L/person/day)

(3) solid waste production (kg/person/day)
(4) wastewater production (L/person/day)

Infrastructure Alternative Characteristics

(1) fuel consumption (L/day)
(2) water consumption (L/day)

(3) wastewater production (L/day)
(4) solid waste production (kg/day)

(5) procurement cost (USD)
(6) operating costs (USD)
(7) shipping weight (kg)

(8) emissions factor (ton CO2/unit)

4. Case Study

In order to demonstrate the model, a theoretical military forward operating base (FOB) was
designed as a reasonable representation of a remote community, and infrastructure alternatives were
considered. A military application was chosen for the following example due to the abundance of
bases with remote community characteristics and the breadth of data on sustainable base initiatives.
For this case study, a baseline FOB was first modelled as a typical example of deployed military
assets. Next, a set of equipment alternatives were modelled to demonstrate potential improvements as
a result of investing in sustainable technologies. Then, a set of procedural alternatives were applied to
demonstrate potential performance improvements based on currently fielded infrastructure.

For this case study, the required input data included community features, planning factors,
and infrastructure alternative characteristics. First, community features were dictated based on the
FOB’s design to accommodate 300 personnel in an arid region of Southwest Asia for an anticipated
duration of up to 7 years. All equipment technologies (such as generators, solar panels, and water
purifiers) had to be delivered via aircraft from suppliers located in Central Europe, 5150 km away.
Common services (such as purchasing bottled water or contracting solid waste disposal) could be
sourced from local vendors ranging from 40–80 km from the site. The community feature data
and assumptions are summarized in Table 2. Second, planning factors were identified for power,
water, wastewater, and solid waste through U.S. Army design manuals and historical data [6]. Third,
infrastructure alternative data were sourced from a collection of U.S. Army reports published as a result
of an initiative to identify fuel, water, and waste (FWW) mitigation measures [30–32]. Objectives were
computed in R version 3.6.0 [33] and figures were produced with the ggplot2 package [34].
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Table 2. Case study community feature summary.

Resource Variable Value Units Reference

Fuel Cost (SCfuel) 4 $/L [6]
Emissions Rate (rfuel) 2.6 × 10−3 metric tons CO2/L [29]

Delivery Distance (dfuel) 65 km
Vehicle Efficiency (ffuel) 0.8 km/L [34]
Vehicle Capacity (cfuel) 18,925 L [35]

Water Cost (SCwater) 2.6 $/L [6]
Delivery Distance (dwater) 40 km
Vehicle Efficiency (fwater) 0.7 km/L [35]
Vehicle Capacity (cwater) 17,033 L [35]

Wastewater Cost (SCww) 0.5 $/L
Emissions Rate (rww) 2.3 × 10−5 metric tons CO2/L

Delivery Distance (dww) 80 km
Vehicle Efficiency (fww) 0.7 km/L [35]
Vehicle Capacity (cww) 15,140 L [35]

Solid Waste Cost (SCsw) 8.8 $/kg
Emissions Rate—landfill (rsw) 1.3 × 10−3 metric tons CO2/kg [36]
Emissions Rate—burn pit (rsw) 9.9 × 10−4 metric tons CO2/kg

Emissions Rate—incinerator (rsw) 6.4 × 10−4 metric tons CO2/kg [36]
Delivery Distance (dsw) 72 km
Vehicle Efficiency (fsw) 0.7 km/L [35]
Vehicle Capacity (csw) 16.5 tons [35]

Equipment
Alternatives

Cost (OCair) 29 $/km [37]
Emissions Rate (rair) 4.1 × 10−4 metric tons CO2/km [28]

Delivery Distance (dair) 5172 km
Aircraft Capacity (cair) 86 tons [37]

4.1. Baseline

First, a set of baseline FWW values, summarized in Table 3, was established through experimental
testing of a baseline camp setup [38]. This baseline established a standard by which all other alternatives
could be compared. The baseline setup represented commonly deployed assets for billeting, food
preparation and dining facilities, hygiene services, waste management, water storage and distribution,
and power generation, as shown in Table 4. The identified fuel demand included fuel for infrastructure
sustainment only—fuel required for transportation outside of the FOB must be accounted for separately.
Historical data and subject matter expertise ensured that the baseline infrastructure met U.S. Army
requirements for the sustainment of a 300-person contingency site.

Table 3. Resource summary, 300 personnel, arid environment [31].

Resource Category Volume Unit

Fuel Demand 3944 L/day
Power Demand 5108 kWh/day

Potable Water Demand 33,017 L/day
Wastewater Demand 32,282 L/day
Solid Waste Demand 1302 kg/day
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Table 4. Equipment and procedural infrastructure alternative characteristics.

Infra. Cat. Infrastructure Alternative
vfuel vwater vww vsw wt PC

(L) (L) (L) (kg) (kg) (USD/unit)

Eq
ui

pm
en

tA
lt

er
na

ti
ve

s

Baseline site 3944 33,017 32,282 1302 506,835 1,191,215

Facility
Insulation

(Baseline Alt.)—Single ply tent liner 3129 23,000
Insulated tent liner & photovoltaic array shade 3478 33,017 32,282 1302 17,647 487,830

Power
Production

(Baseline Alt.)—60 kW tactical generator 41,929 650,000
Hybrid generator and battery system 2740 33,017 32,282 1302 241,061 7,200,000
Photovoltaic array and battery system 397 33,017 32,282 1302 1,015,840 35,600,000

Food
Preparation

(Baseline Alt.)—Expeditionary kitchen system 6349 150,000
Fuel-fired expeditionary kitchen system 3823 33,304 32,570 1302 6984 170,000

Refrigeration (Baseline Alt.)—Multi-temperature refrig. system 18,225 120,000
High efficiency refrigeration system with solar array 3914 33,017 32,282 1302 17,493 136,150

Water
Production

(Baseline Alt.)—Bottled water imported to site 0 0
Reverse osmosis water purification system 4148 -4349 32,282 1302 3628 284,500

Latrines (Baseline Alt.)—Expeditionary latrine system 11,646 200,000
High efficiency latrine system 4383 25,401 23,020 1305 13,393 240,000

Solid Waste
Mgmt

(Baseline Alt.)—Waste exported from site to landfill 0 0
Open-air burn pit 4020 33,017 32,282 160 0 5000
Incinerator 4008 33,017 32,282 226 38,774 750,000

Wastewater
Mgmt

(Baseline Alt.)—Waste exported from site 0 0
Activated sludge bioreactor 3952 33,017 3452 1302 12,898 400,000
Activated sludge bioreactor and reverse osmosis
water purification system 3963 15,806 1768 1302 22,571 1,150,000

Pr
oc

ed
ur

al
A

lt
er

na
ti

ve
s

Billeting (Baseline Alt.)—14 personnel per tent 425,292 45,885
Billeting consolidation, 18 personnel per tent 3732 33,017 32,282 1302 402,436 35,910

Power
Production

(Baseline Alt.)—60 kW tactical generator 38,704 600,000
Generator reallocation according to avg. loading 3168 33,017 32,282 1302 27,415 425,000
60 kW tactical generator grid 2324 33,017 32,282 1302 40,316 625,000

Laundry
Services

(Baseline Alt.)—Unlimited laundry allowance 261 2250
1/2 baseline laundry allowance 3921 31,597 32,282 1302 156 1350

Hygiene
Services

(Baseline Alt.)—10-min daily showers 4 80
7-min weekly showers 3876 17,998 17,260 1302 4 80

Latrines (Baseline Alt.)—Unlimited toilet flushes 11,646 200,000
Reduced toilet flushes 3936 27,634 26,900 1302 11,646 200,000

The FOB’s baseline environmental impact and cost were calculated using Equations (1)–(3).
The initial environmental impact was found to be 2350 tons CO2e, increasing at a rate of 14.3 tons/day.
The capital procurement and mobilization cost was $3.1M, with operating costs of $134,000/day. These
values provided a standard by which further infrastructure alternatives may be compared.

4.2. Equipment Alternatives

Next, the performance of a set of equipment alternatives was modelled. The alternatives and
their FWW consumption and production values are detailed in Table 4 as compared to the baseline.
The results of this analysis are shown in Figure 2. Each alternative required some material equipment
in addition to, or in place of, a baseline equipment set with the potential to conserve resources.
Coincidentally, many of these technologies required a substantial investment in terms of the purchase
cost and delivery. For example, a photovoltaic array and lithium ion battery system, as a power
production alternative, was compared against a baseline of 60 kW generators. While the solar
alternative saved the site nearly 3560 liters of fuel per day, the equipment itself weighed over 900,000
kg more than its generator competitor [39]. This extra weight imposed additional delivery costs and
transportation emissions.
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Figure 2. The initial impact of alternatives may be offset by low operating requirements.

Figure 2 illustrates the tradeoffs between initial and operating requirements for 864 potential
equipment portfolios. Each line represents the cumulative EI and C of one portfolio, with the baseline
signified in red. While the baseline equipment set imposed a low IEI and IC, it led to one of the highest
possible cumulative EI and C values due to its operating requirements. Other alternatives imposed
higher IEI and IC values but lower operating requirements. For example, portfolio #807, shown in
Figure 2 as a blue line, was comprised nearly exclusively of sustainable technologies outlined in
Table 5. While this portfolio’s IEI and IC were 1.5 and 4.2 times higher than the baseline’s, its operating
requirements were 1.6 and 10.3 times lower, respectively. These sustainability tradeoffs resulted in
the IC being offset after 81 days and the IEI being offset after 231 days, at which time portfolio #807
became more sustainable than the baseline. Similarly, each interaction in Figure 2 designates the time
at which a portfolio became a more environmentally or financially sustainable choice.

Table 5. Baseline versus portfolio #807, an example of sustainable equipment alternatives.

Infrastructure
Category Baseline Portfolio #807

Fac. Insulation Single ply tent liner Single ply tent liner
Power Pro. 60 kW tactical generator Hybrid generator and battery system
Food Prep. Expeditionary kitchen system Expeditionary kitchen system

Refrigeration Multi-temperature refrigeration system High efficiency refrigeration system with solar array
Water Pro. Bottled water imported to site Reverse osmosis water purification system

Latrines Expeditionary latrine system Expeditionary latrine system
Solid Waste Mgmt. Waste exported from site to landfill Incinerator

Wastewater Mgmt. Waste exported from site Activated sludge bioreactor and reverse osmosis
water purification system

Initial EI (CO2e) 2356 3581
Daily EI (CO2e) 14 9
Initial C (USD) 3,100,000 12,900,000
Daily C (USD) 134,000 13,000

4.3. Procedural Alternatives

In addition to the 864 equipment portfolios, 48 procedural portfolios were also identified through
the U.S. Army’s FWW initiative, shown in Table 4 and Figure 3. While the equipment alternatives
considered deviations from existing infrastructure, the procedural alternatives utilized only baseline
camp equipment. The assessed procedures instead aimed to mitigate resource consumption by
restricting personnel quality of life allowances, such as shortening shower times or limiting loads
of self-help laundry. For this portion of the case study, each feasible portfolio was comprised of
a unique combination of procedural alternatives and evaluated against the baseline. Portfolio #48,
the most sustainable set of procedural alternatives, is designated in Figure 3 by a green line. Portfolio
#48 was comprised exclusively of resource-saving measures such as billeting consolidation, limited
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laundry allowances, and reduced shower times and toilet flushes. While these alternatives were
not considered in the final optimization function, they did highlight the model’s ability to quantify
potential sustainability improvements with a limited equipment investment.
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4.4. Optimal Alternatives

Finally, the equipment alternative data were normalized, and the negative sustainability impacts
(SIp) of all equipment-based portfolios were calculated. Then, the optimal solution with the lowest SI
at each point in time was identified. Figure 4 shows the optimal portfolios for varying importance
weights with the baseline in red for comparison.Sustainability 2020, 12, x FOR PEER REVIEW 11 of 14 
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Figure 4. Optimal portfolios according to varying importance weights: (a) wtEI = 90%, wtC = 10%;
(b) wtEI = 50%, wtC = 50%; and (c) wtEI = 10%, wtC = 90%.

In each scenario, the optimal site makeup transitioned rapidly in the first three years. After
this point, the optimal site began to steady. In Figure 4a,b, the importance weight applied to the
environmental impact was set at 90% and 50%, respectively. In both scenarios, portfolio #816 was
found to be the optimal infrastructure alternative combination from 3 years on, due to its low daily
emissions of 1.1 CO2e/day. This site’s makeup included sustainable technologies such as photovoltaic
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arrays and high efficiency refrigerators and incinerators, as described in Table 6. Figure 4c, however,
illustrates optimal solutions when the environmental impact importance weight was set at just 10%.
In this scenario, the optimal alternative combination changed twice in the fifth year before settling on
portfolio #97. Rather than including pricey, environmentally conscious technologies, this site relied on
less expensive, easily transportable alternatives that resulted in low procurement and operating costs.

Table 6. Optimal equipment portfolios according to varying importance weights.

Infrastructure
Category Portfolio #816 Portfolio #97

Fac. Insulation Insulated tent liner and photovoltaic array shade Single ply tent liner
Power Pro. Photovoltaic array and battery system 60 kW tactical generator
Food Prep. Fuel-fired expeditionary kitchen system Expeditionary kitchen system

Refrigeration High efficiency refrigeration system with solar array Multi-temperature refrigeration system
Water Pro. Reverse osmosis water purification system Bottled water imported to site

Latrines Expeditionary latrine system Expeditionary latrine system
Solid Waste Mgmt. Incinerator Open-air burn pit

Wastewater Mgmt. Activated sludge bioreactor and reverse osmosis
water purification system Waste exported from site

Initial EI (CO2e) 7253 2356
Daily EI (CO2e) 1 14
Initial C (USD) 44,730,000 3,100,000
Daily C (USD) 1500 123,000

5. Summary and Conclusions

This paper presented a novel infrastructure sustainability assessment model for the design and
construction of remote communities. The model was developed in four main sections that included:
(1) developing metrics to measure the environmental and economic performance of infrastructure
alternatives; (2) formulating the model’s objective functions; (3) identifying the model’s required input
data; and (4) testing the model’s performance via a case study. The case study modelled 864 portfolios
of feasible infrastructure alternatives and 48 portfolios of procedural alternatives, highlighting that the
model is capable of quantifying sustainability impacts for a wide range of decision-maker priorities
and infrastructure alternatives. The results also display the model’s effectiveness at identifying the
environmental and economic tradeoffs associated with more sustainable, yet more bulky and costly,
alternatives. The model was able to generate optimal portfolio solutions according to the importance
a planner assigns to the environmental impact and cost metrics. This model has the potential to assist
planners by allowing them to identify optimal infrastructure alternatives according to the remote
community’s mission, location, and personnel requirements.

This paper presents a model that may be utilized as a framework into which additional
sustainability objectives can be incorporated. In this work, the objectives of environmental impact and
cost assess the sustainability of infrastructure portfolio decisions, investigating impacts on resource
consumption and transportation requirements. While the framework does provide a conduit through
which the sustainability of infrastructure systems can be optimized for remote communities, the model
presented here is not exhaustive, and future research is necessary. Areas of future research include
the optimization of geographical citing according to resource locations, the ability to select multiple
alternatives within each category in order to realize synergistic benefits, and the incorporation of
additional sustainability objectives such as quality of life, social impact, and human health. Additionally,
the present model assumed constant daily resource requirements and emissions factors. Further
research should consider a more robust analysis of emissions and operating costs to account for
equipment deterioration and irregular maintenance requirements. Additionally, while the presented
objective function accounted for the environmental impact and cost from an infrastructure alternative’s
purchase through operation, it disregarded production and demolition. Here, it was assumed that all
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infrastructure alternatives were previously manufactured, which classified their economic impacts
as sunk costs. As the remote community’s duration was flexible, the impacts due to demolition
or reconstitution were considered negligible. The present model may be adapted to account for
these factors.
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