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Abstract 

Mission Dependency Index (MDI) is a metric developed to capture the relative 

criticality of infrastructure assets with respect to organizational missions.  The USAF 

adapted the MDI metric from the United States Navy’s MDI methodology.  Unlike the 

Navy’s MDI data collection process, the USAF adaptation of the MDI metric employs 

generic facility category codes (CATCODEs) to assign MDI values.  This practice 

introduces uncertainty into the MDI assignment process with respect to specific missions 

and specific infrastructure assets.  The uncertainty associated with USAF MDI values 

necessitated the MDI adjudication process.  The MDI adjudication process provides a 

mechanism for installation civil engineer personnel to lobby for accurate MDI values for 

specific infrastructure assets.  The MDI adjudication process requires manual review of 

facilities and MDI discrepancies, justification documentation, and extensive coordination 

between organizations.   

In light of the existing uncertainty with USAF MDI values and the level of effort 

required for the MDI adjudication process, this research pursues machine learning and 

the knowledge discovery in databases (KDD) process to identify and understand 

relationships between real property data and mission critical infrastructure.  Furthermore, 

a decision support tool is developed for the MDI adjudication process.   Specifically, 

supervised learning techniques are employed to develop a classifier that can identify 

potential MDI discrepancies.  This automation effort serves to minimize the manual MDI 

review process by identifying a subset of facilities for review and potential adjudication.   
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MISSION DEPENDENCY INDEX 

OF AIR FORCE BUILT INFRASTRUCTURE: 

KNOWLEDGE DISCOVERY WITH MACHINE LEARNING 

 
I.  Introduction 

 
In 2004, the United States Air Force (USAF), along with the other federal 

agencies, received direction via Executive Order (EO) 13327 to implement asset 

management principles in overseeing real property assets.  Asset management can be 

defined as “a systematic process of maintaining, upgrading, and operating physical assets 

cost-effectively” (McElroy, 1999).  While there are many definitions of asset 

management, common themes include deliberate processes, data collection, and data 

analysis employed in managing infrastructure life-cycle-costs.  Asset management is 

especially important within the federal government as taxpayers expect transparency, 

accountability, and cost effective operations (McElroy, 1999).  An analysis conducted 

approximately one year after the signing of EO 13327 summarized “the EO’s primary 

objective is to promote efficient and economical use of the federal government’s real 

property assets” (Teicholz, Nofrei, & Thomas, 2005).  To this end, Major General Del 

Eulberg, the Air Force Civil Engineer from June 2006 to August 2009, implemented asset 

management for Air Force civil engineering assets and is arguably the first champion of 

the USAF transition to asset management.  In 2008, Eulberg wrote the following excerpt 

regarding asset management principles in an issue of the Air Force Civil Engineer 

Magazine: “We can no longer afford to allocate resources according to some fair-share, 

‘peanut butter spread’ method – asset management is all about a proactive, fact-based 
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approach to analyze data to make the best decisions possible” (Eulberg, 2008).  This 

statement emphasized the deliberate pursuit of data-driven analysis and prioritization of 

resource allocation.  At that time, asset management principles had already been 

implemented within the Federal Highway Administration (FHWA) as well as other 

government and business organizations across the globe (Hodkiewicz, 2015; McElroy, 

1999).  The general’s charge was to follow suit in implementing asset management 

principles in the USAF.   

The USAF real property portfolio is vast.  The Department of Defense (DOD) 

Base Structure Report (2013) indicates that the USAF real property portfolio 

encompasses assets across the globe and has an estimated Plant Replacement Value 

(PRV) of over $259 billion.  The nature of USAF mission sets and support functions 

necessitate an extensive real property portfolio.  The USAF is charged with providing the 

United States with specific capabilities to enable global vigilance, global reach, and 

global power.  These capabilities are fulfilled through the following proficiencies as 

indicated in the Air Force 2023 Implementation Plan (USAF, 2013): 
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Global Vigilance 
• Space Superiority (Global Space Mission Operations) 
• Strategic Warning 
• Space Situational Awareness 
• Global ISR (includes all domains) 
• Defensive Cyberspace Operations 
• Theater Missile Warning 
• Theater ISR (Airborne and Cyberspace) 

 
Global Reach 
• Air Refueling (to enable global operations) 
• Inter-theater Airlift 
• Theater Air Refueling 
• Intra-theater Airlift 
• Aeromedical Evacuation 

 
Global Power 
• Nuclear Deterrence Operations 
• Global Command and Control (C2) 
• Global Precision Attack (includes Offensive Cyberspace Ops) 
• Space Superiority (Space Control) 
• Theater C2 
• Theater Air Superiority 
• Theater Precision Attack (Interdiction, Special Ops, Close-Air-Support, 

Offensive Cyberspace Ops) 
• Combat Search and Rescue (Personnel Recovery) 

 

The 20 mission capabilities in the 2023 Implementation Plan represent complex 

and diverse requirements vital to national defense and combatant command (COCOM) 

mission requirements.  These mission capabilities require significant infrastructure for 

effective operations; and this infrastructure must be maintained.  However, there is a 

finite budget with which these real property assets can be maintained resulting in a 

multitude of unfulfilled facility requirements.  As such, difficult decisions and tradeoffs 

must be made with respect to funding mission critical facility requirements first.  The 
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prioritization of enterprise infrastructure requirements is a uniquely complex task for 

USAF Civil Engineer (CE) personnel.   

Mission Dependency Index Background 

The USAF prioritization model for infrastructure assets has changed multiple 

times in the past few years.  The two most recent models have employed a Mission 

Dependency Index (MDI) value in resource allocation (Nichols, 2015).  The Federal Real 

Property Council (FRPC) defines MDI as “the value an asset brings to the performance of 

the mission as determined by the governing agency” (FRPC, 2011).  Currently, Air Force 

MDIs are assigned based on real property category codes (CATCODES).  CATCODES 

are implemented via the Federal Real Property Categorization System (RPCS), which 

provides a detailed hierarchy of real property uses as directed by the DOD (DOD, 2015).   

The MDI process originated from work done by the U.S. Navy and U.S. Coast 

Guard in order to facilitate real property funding prioritization.  The Navy’s process is 

relatively robust, as it includes installation specific interviews with real property 

stakeholders.  These interviews determine the individual input values for an MDI 

equation.  MDI data collection does not come without a cost, however.  The United States 

Army Corps of Engineers (USACE) estimated that the data collection effort may cost 

anywhere between $40,000 and $75,000 per installation (Michael Grussing et al., 2010).   

In 2008, the USAF partnered with Navy MDI experts to conduct a “proof of 

concept” at two installations, Langley Air Force Base (AFB) and Fairchild AFB 

(Antelman, 2008).  The Navy MDI model implemented in this proof of concept was 

found to be generally accurate in most cases; but, due to complexity and cost, the Air 
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Force opted to forego installation specific interviews with stakeholders (AFCEC, 2015).  

In lieu of data collection, the USAF utilized the asset specific Navy MDI data to derive 

MDI values for general CATCODES.  In order to map MDI values from existing Navy 

facility data, USAF Civil Engineers created statistical distributions of the MDI values for 

each of the four-digit Facility Analysis Codes (FACs).  FAC categories are common 

across the entire DOD, thus providing the most equivalent means of comparing Navy and 

Air Force real property assets.  Civil Engineers evaluated the MDI distributions and 

selected the most appropriate MDI point value for each four-digit FAC.  Next, USAF 

Civil Engineers utilized the four-digit FAC and MDI mapping to further derive MDI 

values for the more specific six-digit USAF CATCODEs.  This meant that each USAF 

CATCODE was assigned a distinct MDI value, which could then be applied to individual 

real property assets across the USAF enterprise.   

Problem Statement 

The uncertainty associated with USAF MDI values necessitates extensive review 

and validation real property mission criticality.  USAF Civil Engineers initially 

developed the existing MDI assignment method as an interim solution as it relied solely 

on generic facility use categories instead of data collection from the installations.  This 

situation remains with MDI values assigned solely based off of real property 

CATCODES.  The lack of installation and mission specific data, however, leads to 

inconsistencies with real property MDI values.  Nichols (2015) uses the example of a 

humidity-controlled warehouse, CATCODE 442421, which has an MDI of 59.  Nichols 

conveys that an MDI of 59 may not capture the true mission criticality of such a 
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warehouse if the facility supports a special operations or cyber warfare mission.  In this 

scenario, the installation real property officer and affected stakeholders would have to 

lobby for support and provide adequate justification to correct the MDI value. 

In 2014, the Air Force Civil Engineer Center (AFCEC) provided guidance to 

Major Commands (MAJCOMs) and installations on a standardized process to adjudicate 

real property MDI values not representative of the true mission criticality.  The policy 

concedes the following:  “The MDI is currently assigned using a facility’s designated 

CATCODE, which provides an accurate assessment of facility criticality in most cases, 

but not all” (AFCEC, 2015).  The MDI adjudication process requires six-levels of 

coordination beginning with a base-level engineer review of facilities and MDI values to 

identify discrepancies.  The MDI adjudication process emphasizes the need for base-level 

input, more sufficient data, and generally, a more effective MDI assignment process that 

captures the context surrounding infrastructure and missions.  In short, the current USAF 

MDI methodology does not effectively characterize the true relationship between real 

property assets and mission criticality due to insufficient supporting data.  Furthermore, 

the MDI refinement process drives additional personnel and management workload for 

installations, MAJCOMs, and AFCEC.  Such a process may benefit from advances in 

computational techniques and automation widely accessible with today’s computers.   

Machine Learning 

As the world rapidly advances in the information age, reliance on decision 

support systems (DSS) is driving research for more effective methods of acquiring 

knowledge from data.  Air Force CE priorities are shifting toward data-centric asset 
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management practices in the wake of academic and private sector developments in this 

field.  This transition is a tremendous paradigm shift from the largely reactive and costly 

approach to facility sustainment of the past.  The Air Force Asset Management Plan 

(AFAMP) states, “Asset visibility should form a data foundation upon which the Air 

Force may accurately measure and communicate these risks to defend needed funding” 

(AFCEC, 2014a).  This statement captures several key themes in asset management 

including measurement, communication, and risk, all of which are undergirded by data. 

The intent of the MDI metric is to use data obtained from facility and mission 

stakeholders to arrive at a quantitative representation of the consequence of failure.  This 

is a highly complex problem and the Navy has invested significant time, money, and 

personnel in gathering data to implement their MDI methodology.  Given that a 

significant amount of data exists from the Navy’s MDI efforts, how can this data be used 

to better understand the relationships between MDI and real property data?  

Understanding the relationships between MDI and real property data could lead to 

beneficial heuristics or rule-based decisions for USAF implementation.  Furthermore, this 

knowledge could eliminate the need for costly data collection or provide a more effective 

method of adjudicating improperly assigned MDIs.  Given that two USAF installations 

were evaluated using the Navy MDI methodology, can this data be used to create a model 

that can predict mission critical infrastructure?  Machine learning is an area of study that 

may be able to provide these benefits.   

Machine learning is the study of acquiring knowledge from data automatically 

through efficient computational methods (Langley & Simon, 1995).  There are two 

primary domains within machine learning: supervised learning and unsupervised 
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learning.  Supervised learning utilizes a data set that includes one or more data features 

where each observation includes the corresponding correct answer, or label.  There are 

many learning paradigms within supervised learning.  The analytical objectives and data 

format typically drive supervised learning paradigm selection.  Alternatively, 

unsupervised learning is the process of looking for structure that exists in the data set 

without the use of a correct answer, or label.  The ever-decreasing cost of data storage 

and computational processing power catalyzes machine learning techniques and 

applications.  Because of this momentum, machine learning applications are employed in 

a myriad of fields and provide many options for solving complex problems or simply 

obtaining a better understanding of relationships in data.     

Ultimately, machine learning techniques could be employed to better understand 

and facilitate real property prioritization based on organizational objectives, facility 

condition, life cycle cost analysis, real property data features, and mission characteristics.  

This machine learning application could provide a beneficial decision support tool to aid 

in the process of managing effective allocation of taxpayer dollars to meet DOD mission 

objectives.   
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Research Objective and Investigative Questions 

This research will demonstrate the employment of machine learning for 

understanding relationships between real property data as well as predicting mission 

critical real property assets.  To facilitate this objective, five research questions were 

developed to guide the research: 

 
1. How can machine learning techniques, specifically supervised learning, be 

applied to predict mission critical USAF facilities? 

2. What features should be collected for such an algorithm? 

3. What is the appropriate architecture for such an algorithm? 

4. What are the costs and benefits associated with employing machine 
learning in Air Force asset management facility prioritization? 

5. How can the Knowledge Discovery in Databases (KDD) process be 
applied to facilitate MDI reviews for AFCENT facilities? 

Methodology 

The overarching methodology for this research is the Knowledge Discovery in 

Databases (KDD) process.  This research explores the use of supervised learning 

algorithms for classifying USAF mission critical infrastructure.  Supervised learning has 

become increasingly common in science and business applications to learn from 

experience, draw conclusions, and make predictions.  In order to utilize supervised 

learning techniques, the USAF MDI proof of concept data and USN real property data is 

employed in developing prediction models for USAF real property assets.  This is 

deemed supervised learning because the correct outputs are provided as examples from 

which the model may learn.  Both the Navy real property data and the MDI proof of 

concept data are separated into two sets:  the first is utilized as the training set and the 
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second serves as the test set for model evaluation.  A successful model can be used as a 

decision support tool to facilitate the USAF MDI adjudication process.   

United States Air Forces Central Command (AFCENT) is the sponsor for this 

research.  AFCENT maintains three major air bases in Southwest Asia:  Al Udeid Air 

Base, Qatar; Al Dhafra Air Base, UAE; and Ali Al Salem Air Base, Kuwait.  AFCENT 

has historically utilized Overseas Contingency Operations (OCO) funding to maintain 

and operate installations.  AFCENT is expected to transition away from OCO funding in 

the future and align with the funding model employed across the USAF.  Given this 

imminent transition, it is in AFCENT’s best interest to ensure that infrastructure MDI 

values accurately reflect mission criticality.  AFCENT civil engineer staff provided real 

property data for each of the three operating locations.  The ultimate goal of this research 

is to support AFCENT civil engineers in identifying mission critical infrastructure and 

potential opportunities for MDI adjudication to better implement resource allocation. 

Assumptions/Limitations 

The primary assumption with this research is that relationships exist between real 

property data and mission critical infrastructure.  The current USAF methodology 

supports this assumption as CATCODEs are the primary mechanism for MDI 

assignments.  CATCODEs represent generic functions associated with a given 

infrastructure asset, which provides some indication of mission criticality.  The 

inconsistencies with CATCODE-assigned MDI values are indicative of the fact that 

CATCODEs alone are suboptimal for a mission criticality assessment.  Additional real 

property data features employed with generic function codes may offer improved fidelity 
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for mission criticality assessments.  If additional real property features do not contribute 

to mission criticality, data collection efforts should be pursued for MDI reliability. 

There are five limitations with this study.  First, one of the most important steps in 

machine learning algorithm development is determining the appropriate data inputs for 

the respective data sets.  There are many variables that can be considered in determining 

the consequence of failure for a specific facility.  Through employing various machine 

learning algorithms, it may become evident that the available facility data is not sufficient 

to explain the underlying mission criticality phenomenon.  Second, Navy real property 

data will be analyzed for relationships between real property data and MDI values.  Navy 

and USAF CATCODES differ at the six-digit level but Facility Analysis Codes (FAC) 

align at the four-digit level per DOD requirements.  This code alignment must be 

considered in data selection and comparisons between Navy and Air Force data.  Third, 

utilizing CATCODEs requires the assumption that facilities are recorded with the correct 

CATCODE.  Fourth, a general assumption is that real property data, obtained from the 

respective databases of record, correctly describe the infrastructure assets.  Fifth, some 

facilities serve multiple functions and have multiple CATCODEs, however, USAF 

facility MDI values are assigned based on the predominant CATCODE.  This is 

indicative of a decrease in fidelity when assigning facility MDI values based solely on 

CATCODEs.   
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Overview 

This chapter presented a brief synopsis of the USAF MDI application within the 

context of the Air Force enterprise real property portfolio and the fiscally constrained 

environment.  Chapter II of this document summarizes the literature reviewed for this 

research study.  Chapter III addresses the KDD process and the steps leading up to the 

MDI machine learning analysis.  Chapter IV presents the KDD analysis and results.  

Lastly, Chapter V summarizes the conclusions and significance of the research, answers 

each of the research questions, and recommends additional research areas.   
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II. Literature Review 

Chapter Overview 

This chapter presents background information on MDI, introduces the KDD 

process, and discusses data mining concepts and applications.  First, the literature review 

presents the scope of USAF infrastructure management.  Second, the literature provides 

background information on asset management as a field of study as well as 

implementation within the federal government.  Third, the literature review discusses the 

Navy’s MDI model in order to establish baseline knowledge of the original methodology.  

Fourth, the literature review outlines the USAF adaptation of the Navy’s MDI 

methodology.  Fifth, the literature review presents limitations and purported flaws in the 

MDI methodology.  Finally, the literature review introduces the KDD process and the 

field of machine learning, including techniques and applications, in order to present 

applicability within the context of the established research problem statement.  

USAF Real Property Portfolio and Requirements 

The importance of effective asset management within the government cannot be 

overstated.  The federal government’s real property portfolio is immense, and each 

subordinate agency oversees a conglomeration of facilities that support unique mission 

sets.  USAF real property assets are scattered across the globe and boast an estimated 

total Plant Replacement Value (PRV) of over $259 billion (DOD, 2013).  Additionally, 

USAF real property asset conditions vary widely in both age and condition. 

In 2014, over 4,700 USAF facility projects valued at $3.6 billion were submitted 

for funding consideration (Maddox, 2014).  This is a clear indicator of the high demand 



14 

for infrastructure funding and emphasizes the importance of effective asset management 

practices.  Developing a method to effectively allocate the limited resources in pursuit of 

organizational goals is a complex problem.  This prioritization dilemma necessitates an 

overarching asset management framework and a metric linking facility risk to the USAF 

mission.  Air Force Policy Directive (AFPD) 32-90 (2007), Real Property Asset 

Management, defines real property asset management with the following: 

Air Force real property asset management is the process of accurately 
accounting for, maintaining[,] and managing real property in the most 
efficient and economical manner in accordance with Federal Real Property 
Council guidance, while ensuring that the Air Force has the real property 
it needs for sustaining current and projected missions. 

Asset Management Background 

Infrastructure asset management is a relatively young area of study and combines 

aspects of engineering, business practices, and economics in order to effectively 

management physical assets (McElroy, 1999).  Asset management is a holistic approach 

to managing physical assets and is not specific to any single engineering domain.  

Because of this wide range of applicability, asset management is often defined within the 

context of a specific domain such as transport, construction, electricity, and irrigation 

(Amadi-Echendu et al., 2010).  Each of these fields approaches asset management with 

unique objectives, physical assets, and life-cycle requirements.  Despite the unique 

aspects of different domains, engineering asset management is considered to be a 

conglomeration of concepts from commerce, business, and engineering (Amadi-Echendu 

et al., 2010).  Amadi-Echendu et al. (2010) provide a synopsis of relevant literature in 

order to propose a baseline engineering asset management definition: 
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The commonalities are focusing on the life-cycle of an asset as a whole, 
paying attention to economic as well as physical performance and risk 
measures, appreciating the broader strategic and human dimensions of the 
asset management environment, with the objective of improving both 
efficiency and effectiveness of resources. 

Along with a common understanding, motivations for asset management practices 

include the effective use of resources, gaining competitive advantage, increasing profit 

margin, and ensuring accountability.  Asset management practices are advantageous in 

both the public and private sectors; however, asset management is particularly relevant 

for government agencies due to “public demands for transparency in government 

decision-making, greater accountability for those decisions, and greater return-on-

investment” (McElroy, 1999).  Ultimately, asset management principles facilitate 

effective decision-making. Vanier (2001) presents the six “whats” of asset management 

as a means of defining asset management.  The six “whats” include: (1) what do you 

own?, (2) what is it worth?, (3) what is the deferred maintenance?, (4) what is the 

condition?, (5) what is the remaining service life?, and (6) what do you fix first?.  These 

questions provide an easily understood process for asset management implementation.   

Central to Vanier’s (2001) conceptual framework for infrastructure asset 

management are data and information technology.  McElroy (1999) states that “the focus 

on effective asset management is argued to require an asset decision making framework 

that incorporates organizational structures and information technology aligned with 

financial and budgetary considerations” (Amadi-Echendu et al., 2010).  Information 

technology is a cornerstone of asset management.  Accurate physical asset data fuels the 

decision-making process in pursuit of organizational goals.  Furthermore, Asset 

management tools and data enable the asset manager to synthesize the dynamic 
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relationships between organizational goals, budgets, and real property sustainment in 

tackling the myriad of asset management challenges.   

Asset Management Challenges 

Infrastructure asset management is a complex field with many challenges.  These 

challenges emanate from the inherent intersection of managing physical assets, pursuing 

organizational goals, integrating information technology, and prioritizing funding under 

constrained resources all within a political environment.  Woodhouse (2001) describes 

the complexity of asset management as the integration of “sophisticated technical 

solutions”, management processes, and human factors.  Amid the inherent complexity, 

infrastructure asset management is fundamentally data-centric and relies heavily on 

information technology.  When employed effectively, information technology serves as a 

force multiplier.  Vanier (2001) champions data and decision support tools in 

infrastructure asset management: 

Engineers, technical staff, administrators, and politicians all benefit if 
decisions about maintenance, repair and renewal are based on reliable 
data, solid engineering principles and accepted economic values. When 
reliable data and effective decision-support tools are in place, the costs for 
maintenance, repair and renewal will be reduced and the services will be 
timely, with less disruptions. These improvements will all reduce the costs 
of managing municipal infrastructure. 

While data and decision support tools are an obvious catalyst for infrastructure asset 

management, the lack of quality data and support tools is a resounding message.  Vanier 

(2001) purports that asset managers lack “literature” and “intelligent computer software” 

to assist in the decision making process.  Additionally, Amadi-Echendu et al. (2010) 

present that data is a primary limitation in employing asset management principles:   
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The data requirements for the decision models are very great…ideally, an 
information system provides continuous data on the physical and financial 
conditions and changes in condition of a set of assets that is being 
managed for some purpose. 

The benefits of this optimal scenario include value-focused insight and effective 

decision-making.  Unfortunately, “in the vast majority of organizations, the opinion of 

many engineers is that poor data quality is probably the most significant single factor 

impeding improvements in engineering asset management” (Woodhouse, 2001).  Poor 

data quality is often the product of incorrectly entered data or simply empty data fields 

affording limited or totally ineffective engineering asset management support (Amadi-

Echendu et al., 2010).  Woodhouse (2001) concludes that “the greatest challenges for 

engineering asset management often do not lie in the technical aspects of implementation 

…rather they lie in the human element in data collection, entry and analysis.”  

Furthermore, poor data can be attributed to a lack of indoctrination and training for 

personnel (Amadi-Echendu et al., 2010).  Personnel at all levels of an organization must 

be well trained and educated in the principles and benefits of asset management practices 

in order to effectively manage infrastructure.  Asset management education and 

implementation are no simple task, especially within the confines and complexities of the 

federal government.  The federal government acknowledges the challenges associated 

with asset management and identified infrastructure management as a high-risk area as 

early as 1997 (GAO, 2003). 
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Asset Management within the Federal Government 

President George W. Bush signed Executive Order (EO) 13327 on 4 February 

2004 laying the foundation for infrastructure asset management principles within the 

federal government.  Section one of the EO outlines the policy vision for asset 

management as (1) emphasizing efficient and economic use of real property assets and 

(2) assuring management accountability.  Section two defines federal real property as 

“any real property owned, leased, or otherwise managed by the Federal Government, 

both within and outside the United States, and improvements on Federal lands” 

(Executive Order No. 13327, 2004).  Section three establishes the requirement for agency 

Senior Real Property Officers.  Senior Real Property Officers are responsible for 

developing and implementing the asset management planning process for their respective 

agency.  This senior position provides a means of implementing change and assigns a 

responsible individual, who is accountable for an agency’s asset management program 

(Teicholz et al., 2005).  Section four establishes the Federal Real Property Council 

(FRPC) under the Office of Management and Budget (OMB) “to develop guidance for, 

and facilitate the success of, each agency’s asset management plan” (Executive Order No. 

13327, 2004).   

EO 13327 established the FRPC as an interagency forum for collaboration in 

implementing asset management policy directives.  The FRPC is comprised of all 

SRPOs, the Controller of the OMB, the Administrator of General Services, and is chaired 

by the Deputy Director for Management of the OMB (Executive Order No. 13327, 2004).  

Initially, the FRPC established four committees to focus on (1) asset management, (2) 

performance measures, (3) inventory, and (4) systems (Teicholz et al., 2005).  These 
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committees developed key guidance documents including a list of ten guiding asset 

management principles outlined in Figure 1. 

 
Figure 1.  Asset Management Principles (Teicholz et al., 2005) 

Additionally, as a means of standardizing federal real property data for asset 

management, the FRPC established data elements and performance measures, including 

MDI, as indicated in Figure 2. 

 
Figure 2.  FRPC Data Elements, Performance Measures (Teicholz et al., 2005) 
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Real property data is a key tenet of asset management that continues to evolve 

with technology and asset management practices.  NAVFAC P-78, Real Property 

Inventory (RPI) Procedures Manual, and AFI 32-9005, Real Property Accountability and 

Reporting, state the following about asset management and data (AF/A7C, 2008; 

NAVFAC, 2008a): 

Accurate and timely real property asset data is fundamental to effective 
management of assets. Real property asset data links accountability, 
regulatory compliance, resource requirements, and decision support. 
Access to the data is essential across the Defense enterprise, at all levels. 

EO 13327 and the standup of the FRPC represent a catalyst for the standardization of real 

property data across the entire DOD.  The FRPC manages recurring Real Property 

Inventory Reporting (RPIR) in support of the federal government’s asset management 

framework (FRPC, 2015).  Ultimately, the requirement for asset management practices 

within the federal government is driven by the current fiscal environment and 

accountability for resource allocation decisions. 

MDI Background 

The public sector is unique in that objectives are not tied to profit but the public 

good (Albrice et al., 2014).  Federal agencies are charged with providing specific and 

unique services that are often hard to compare with motivations found in industry.  The 

USAF 2023 Implementation Plan (2013) states that the USAF is charged with delivering 

“decisive global vigilance, global reach, and global power, in and through air space and 

cyberspace anywhere on the globe at a time and place of our choosing”.  The plan 

outlines 20 capabilities to meet these objectives, each of which relies on physical 
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infrastructure.  These mission sets are dynamic and synergistic, which contributes to the 

complexity of determining risk and value with respect to mission.  

MDI is an attempt at solving the complex task of assigning value to physical 

infrastructure based on the mission or missions supported.  MDI is a means of describing 

the “consequence of failure” associated with a real property asset in lieu of a strictly 

profit-driven decision (AFCEC, 2015).  Mission dependency, however, is just one 

component used in prioritizing Sustainment, Restoration, and Modernization (SRM) 

funds.   MDI is used in conjunction with Facility Condition Index (FCI), which is 

intended to describe an asset’s “probability of failure” based on the asset’s condition 

(AFCEC, 2015).  Infrastructure condition is an important aspect of asset management. A 

Government Accountability Office report (1998) presenting leading practices in capital 

decision-making emphasizes the utility of condition assessments: 

Routinely assessing the condition of assets and facilities allows managers 
and other decision makers to evaluate the capabilities of current assets, 
plan for future asset replacements, and calculate the cost of deferred 
maintenance.  

Together, MDI and FCI support the final phase of asset management decision-making: 

prioritization of resource allocation.   

The primary objective of MDI is to optimize readiness at the lowest possible cost 

by focusing on critical facilities (high MDI score) that are below acceptable condition 

(low FCI score) (NAVFAC, 2008b).  MDI’s link to mission execution is important for 

public sector organizations as private sector objectives differ despite similar 

infrastructure challenges (National Research Council, 2008).  The Navy was the first 

service in the DOD to link facilities to missions with the MDI metric (NAVFAC, 2008b): 
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MDI is the standard methodology within the Naval shore establishment for 
determining infrastructure SRM priorities based on mission criticality 
from a “warfighter”, operator or users point of view.  It does this by 
evaluating the impact to the mission if the function provided by the 
infrastructure is interrupted or relocated.  MDI is reported on a scale of 1 
to 100, with 100 representing the highest mission importance.  

NAVFAC MDI Model 

Naval Facilities Engineering Service Center (NFESC) first introduced MDI in 

2001 (prior to EO 13327) in collaboration with the Coast Guard’s Office of Civil 

Engineering in Washington, D.C (Dempsey, 2006).  MDI is an operational risk 

management metric that seeks to link facilities to mission execution (Dempsey, 2006).  

The original intent of the MDI metric was to provide actionable information for 

maintenance, repair, sustainment, resource allocation, divestiture, and physical security 

(Dempsey, n.d.).  The Navy’s MDI metric facilitates these efforts by assessing 

interruptibility, relocateability, and replaceability of real property assets as viewed by 

senior level decision makers responsible for operational and facility decisions.  NAVFAC 

completed MDI assessments at all major navy bases by August of 2007 with the intent to 

update on a three-year cycle (NAVFAC, 2008b).  Additionally, the Navy established a 

process for updating or revising MDI values if required prior to the standard three-year 

cycle in order to maintain currency for facility decision making.   

Because the Navy MDI is based on deliberate communication with mission and 

facility stakeholders, it facilitates the capturing of tacit knowledge through survey 

questions.  Data collectors pose four questions to stakeholders in order to assess mission 

criticality.  Two questions assess mission criticality with respect to mission-

intradependency (dependencies within a mission) and two questions on mission-
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interdependency (dependencies between missions).  Intradependency seeks to capture the 

dependencies within a given functional area while interdependency captures 

dependencies between functional areas.  The two primary concerns with interdependency 

and intradependency are maximum interruption durations and the degree of difficulty 

associated with relocation or replaceability.  The four MDI survey questions are 

presented in Table 1.  The four MDI survey questions are answered qualitatively in the 

context of time and difficulty.  Table 2 and Table 3 present the definitions and possible 

responses for the interruptibility and relocateability and replaceability survey questions, 

respectively.   

Table 1.  Navy MDI Survey Questions (Antelman, 2008) 

 
 

 

 

Primary Topic Measure Metric Question # Question Verbiage 

Intradependency 

Interruptibility Duration 
(Time) 1 

How long could the "functions" supported 
by the (facility, structure, or utility) be 
stopped without adverse impact to the 
mission? 

Relocateability Difficulty 2 

If your (facility, structure, or utility) was 
not functional, could you continue 
performing your mission by using another 
(facility, structure, or utility), or by setting 
up temporary facilities? 

Interdependency 

Interruptibility Duration 
(Time) 3 

How long could the services provided by 
(named functional Area) be interrupted 
before impacting your mission readiness? 

Replaceability Difficulty 4 

How difficult would it be to replace or 
replicate the services provided by (named 
functional Area) with another provider 
from any source? 
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Table 2.  Response Options for Interruptibility (Antelman, 2008) 

Interruptibility Responses (Time) 
Response Definition 

None (N) The functions performed within the facility must be maintained continuously (24/7) 
Urgent (U) Minutes not to exceed 30 minutes 
Brief (B) Minutes or hours not to exceed 24 hours 
Short (S) Days not to exceed 7 days 
Prolonged (P) More than a week 
  

 

Table 3.  Response Options for Relocateability and Replaceability (Antelman, 2008) 

Relocateability and Replaceability Responses (Difficulty) 
Response Definition 

Impossible (I) 
There are no known redundancies or excess/surge capacities 
available, or there are no viable commercial alternatives – only this 
site/command can provide these services 

Extremely Difficult (X) 

(there are minimally acceptable redundancies or 
excess/surge capacities available, or there are viable commercial 
alternatives, 
but no readily available contract mechanism in place to replace the 
services) 

Difficult (D) 

Services exist and are available, but the form of delivery is ill defined 
or will require a measurable and unbudgeted level of effort to obtain 
(money/man-hours), but mission readiness capabilities would not be 
compromised in the process 

Possible (P) Services exist, are available, and are well defined 

 
 

With the survey responses collected from facility stakeholders, risk matrices are 

utilized to the obtain intradependency (MDw) and interdependency (MDb) values as 

indicated in Figure 3 and Figure 4, respectively.  These MDw and MDb values as well as 

the total number of interdependencies, “n”, are then inserted into the MDI formula, 

presented in Equation 1.  The product of the MDI equation is a quantitative score (index) 

between 0-100 where a higher score equates to more severe consequences.  Ultimately, 
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this consequence of failure score (MDI) is assigned to individual assets within the Navy 

real property portfolio. 

 
Figure 3.  NAVFAC Mission Intradependency Matrix (Dempsey, 2006) 

 
Figure 4.  NAVFAC Mission Interdependency Score Matrix (Dempsey, 2006) 

  ( 1 ) 
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As stated previously, the MDw and MDb components represent the mission 

intradependency and mission interdependency values, respectively.  Figure 5 and Figure 

6 present graphical depictions of a hypothetical scenario of intradependencies (within a 

functional area) and interdependencies (between functional areas) for a generic USAF 

functional area, the operations group.  For example, the air traffic control tower in Figure 

5 received an interruptibility response of “urgent” (not to exceed 30 minutes) and a 

relocateability/replaceability response of “extremely difficult”.  These two responses 

make up the intradependency score for the asset using matrix in Figure 3.  Next, the 

interdependency scores for all applicable interdependencies displayed in Figure 6 are 

averaged in Equation 1 yielding a single MDb value.  Lastly, the n-component in the MDI 

equation (Equation 1) denotes the number of mission interdependencies, which are 

represented by the “links” between functional areas in Figure 6.  The natural log function 

provides a scoring scale for the total number of interdependencies identified between 

functional areas.  More specifically, as the number of interdependencies increases, the n 

value in the equation is constrained.   
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Figure 5.  Hypothetical Operations Group Intradependencies (Antelman, 2008) 

 

Figure 6.  Hypothetical Operations Group Interdependencies (Antelman, 2008)  
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USAF MDI Implementation 

The USAF began investigating the MDI metric in 2008 using the Navy 

methodology as the primary reference guide (AFCEC, 2015).  At that time, there was no 

clear government or industry standard to calculate MDI (Madaus, 2009).  The transition 

to asset management principles through EO 13327 served as the catalyst for incorporating 

the MDI metric into USAF business practices.  The goal of MDI implementation and the 

“Asset Optimization Concept” was to move toward a common approach that would 

enable an Air Force-wide analysis of real property requirements (Madaus, 2009).   

At that time, the USAF determined that the Navy had a proven MDI methodology 

but that it was “complex and expensive” (Madaus, 2009).  Because the Navy 

methodology requires in-person interviews, there are significant costs associated with the 

data collection effort.  The United States Army Corps of Engineers (USACE) estimated 

that MDI data collection would cost between $40,000 to $75,000 per installation 

depending on the number of mission sub-elements (Michael Grussing et al., 2010).  With 

185 installations world-wide, the estimated initial cost for data collection is $7.4 to $13.9 

million and the estimated annual cost is $2.5 to $6.9 million for recurring assessments 

(Nichols, 2015).  Antelman (2008) purports that both the Navy and NASA have 

employed internet-based surveys for data collection yielding up to 50 percent cost 

savings. 

Before making a decision on enterprise-wide MDI implementation, the USAF 

worked with Naval Facilities Engineering Service Center to execute two “proof of 

concept” evaluations at Langley AFB and Fairchild AFB (Antelman, 2008).  Antelman 

(2008) cites the following as motivation for the USAF proof of concept:   
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The current process used by the Air Force lacks a disciplined driven asset 
strategy and metrics that link assets to its missions, thereby making it 
difficult to make prudent, long-term funding decisions. 

The MDI Refinement Playbook (2015) states that these beta tests were found to be 

generally accurate in most cases.  The results of the MDI proof of concept for Fairchild 

AFB and Langley AFB are presented in Figure 7 and Figure 8, respectively. 

 
Figure 7.  MDI Score Distributions at Fairchild AFB (Antelman, 2008) 

 
Figure 8.  MDI Score Distributions at Langley AFB (Antelman, 2008) 
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Ultimately, the USAF opted to implement an MDI methodology that combined 

aspects of the Navy and the National Park Service (NPS) MDI methodologies (AFCEC, 

2015; Madaus, 2009).  The new USAF MDI implementation employed existing real 

property Category Codes (CATCODES) to assign MDI values to facilities.  At that time, 

the NPS was also assigning MDI values based on CATCODES.  This method negated the 

requirement for the extensive data collection process in use by the Navy. 

In lieu of data collection, the USAF related Navy real property CATCODEs and USAF 

real property CATCODES using DOD four-digit Facility Analysis Codes (FACs) 

(AFCEC, 2015; Madaus, 2009).  The four-digit FACs are equivalent across each of the 

DOD services whereas CATCODES are unique to each service (DOD, 2013).  Through 

this process, Navy facilities slated for demolition or disposal with an MDI less than 25 

were ignored.   For a given USAF CATCODE, the USAF selected the average MDI 

value when the standard deviation was less than 10.  In situations where the standard 

deviation was greater than 10, USAF personnel performed a manual review of the data 

and selected the most appropriate MDI based on subject matter expert judgment, the MDI 

beta test results, and Mission Area Rating Matrix (MARM) groupings and priorities.  At 

that time, MARM groupings were used to develop inputs for the USAF facility 

investment strategy and program objective memorandum (POM) (Sharp, 2002).  The 

MARM categories include Primary Mission, Mission Support, Base Support, and 

Community Support.  Table 4 presents examples of facilities included in each of the 

MARM categories.  The USAF MDI adaptation was implemented in February of 2009 as 

an “interim” method with the understanding that the MDI results would be “less 

granular” than collecting field data (Madaus, 2009). 
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Table 4.  MARM Categories and Examples (Madaus, 2009) 

 

USAF MDI Adjudication Process 

During the initial MDI investigation period (2008-2009), the MDI project team 

understood that the interim MDI methodology would produce inferior results as 

compared to collecting data from the field (Madaus, 2009).  This statement proved true as 

installations and MAJCOMs began to identify facilities with inaccurate MDI values that 

had the potential to negatively impact funding allocation.   Both USAF Civil Engineers 

and mission operators identified discrepancies with facility MDIs.  In July 2013, the CE 

Board cited large-scale improvement of the MDI as a priority (AFCEC, 2015).  

Additionally, the FY 15-21 Air Force Activity Management Plan (AFAMP)/Air Force 

Comprehensive Asset Management Plan (AFCAMP) Business Rules identified 39 

CATCODES with inconsistent MDI values and allowed for reviews of specific assets  

(AFCEC, 2015).   

MARM Category Facility Examples 

Primary Mission 

Airfield pavements, navigational aids, airfield electrical distribution, operational 
squadron operations centers, missile alert facilities, academic facilities at AETC 
and USAFA, base operations center, research laboratories, depot maintenance 
shops at AFMC bases 

Mission Support 

Primary emergency response facilities (immediate life support and rescue 
facilities such as central security control and fire department), aircraft 
maintenance facilities, test stands, fire stations, base communications center, 
medical functions, primary water and electrical distribution systems 

Base Support 
Admin facilities, chapels, headquarters buildings, supply warehouse, civil 
engineering shops, photo lab, fitness center, essential feeding facilities, 
dormitories, billeting 

Community 
Support 

Housing, lodging facilities, theaters, youth centers and child development 
centers, credit unions, aero club, exchange facilities, recreation site lodging, 
consolidated clubs, museums.  
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In response to the feedback from facility stakeholders and the widespread need to 

correct certain facility MDIs, the Air Force Civil Engineer Center (AFCEC) published 

the MDI Refinement Playbook in 2014. This playbook established a standard process for 

MDI adjudication (AFCEC, 2015).  To date, over 1,000 facilities have been submitted for 

adjudication as seen in Figure 9.  Furthermore, the adjudication data collected thus far 

potentially reveals that some Major Commands (MAJCOMs), including Air Force Global 

Strike Command (AFGSC), have been affected more significantly than others.  The 

AFCEC MDI adjudication data is presented in Figure 10 and indicates the frequency of 

MDI adjudication requests by the respective MAJCOMs. 

 
Figure 9.  MDI Adjudication Status (Current as of Aug 2015) 
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Figure 10.  MAJCOM MDI Refinement Histogram (Current as of Aug 2015)  

 
The MDI refinement process has three primary steps as outlined in the MDI 

Refinement Playbook (2015).  Six distinct parties contribute to the overall process:  (1) 

installation CE personnel, (2) installation functional experts, (3) the installation 

commander, (4) MAJCOM CE personnel, (5) MAJCOM functional experts, and (6) 

AFCEC/CPA.  The first step is to identify MDI discrepancies, which is presented in 

Figure 11.  In the second step, AFCEC/CP adjudicates the changes (Figure 12).  The last 

step is to update approved MDI changes in the real property records (Figure 12).  
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Figure 11.  MDI Refinement Process: Identify Discrepancies (AFCEC, 2015) 

 
Figure 12.  MDI Refinement Process:  Update Real Property Records (AFCEC, 2015) 
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The MDI refinement process provides installations with a means of rectifying 

incorrectly assigned MDI values.  This additional process illuminates the fact that the 

MDI methodology, implemented in 2009, does not adequately describe the value that 

each facility brings to the performance of the mission due to a lack of underlying data and 

over-generalization.  

Navy MDI Limitations 

While numerous limitations have been identified pertaining to the application of 

the MDI methodology within the DOD, four primary issues dispute the MDI 

methodology’s effectiveness: 

1. Questionable value of risk matrices. 
2. Inconsistent with Operational Risk Management (ORM) practices. 
3. Mathematical flaws in calculating MDI values. 
4. Lack of analytical support for the MDI equation. 

 
First, the Navy MDI methodology asserts that “MDI uses Operational Risk 

Management techniques of probability and severity and applies them to facilities in terms 

of interruptibility, relocateability, and replaceability” (Antelman, 2008).  ORM principles 

are not a new concept within the Department of Defense.  ORM is incorporated into 

many facets of military operations and each service maintains some form of ORM 

instruction or manual presenting the step-by-step process for conducting risk 

management analyses.  The Navy instruction for ORM is OPNAVINST 3500.39C (USN, 

2010), Operational Risk Management.  This instruction presents an iterative five-step 

process for risk management: (1) identify the hazards, (2) assess the hazards, (3) make 

risk decisions, (4) implement controls, and (5) supervise.  This ORM process employs 
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risk matrices for a qualitative assessment of probability and severity for a given hazard.  

Cox (2008) acknowledges the popularity of risk matrices (in both public and private 

sector applications) but identifies four significant concerns with their use: 

1. Risk matrices provide poor resolution. 
2. Risk matrices can mistakenly assign higher qualitative ratings to 

quantitatively smaller risks. 
3. Risk matrices produce suboptimal resource allocation. 
4. Risk matrices are the product of ambiguous inputs and outputs that require 

subjective interpretation. 

 
Cox’s most relevant assertion with respect to MDI is that “calculating optimal risk 

management resource allocations requires quantitative information beyond what a risk 

matrix provides” (Cox, 2008).  Here, Cox is clearly stating that quantitative data as a 

requirement for risk management resource allocations and risk matrices are not the 

optimal tool. 

Second, Kujawski and Miller (2009) identify that the MDI methodology deviates 

from the Navy ORM instruction with respect to assessing hazards with probability and 

severity.  The ORM instruction explicitly defines probability and severity qualitatively 

using letters and roman numerals (based on an ordinal scale) whereas the MDI 

methodology employs real numbers.  Probability and severity are represented as 

qualitative values in risk management for the express purpose of avoiding enumeration, a 

“risk assessment pitfall” (USN, 2010).  Additionally, Kujawski and Miller (2009) 

contend that the Navy’s MDI method “makes no attempt to quantify probability and 

includes no discussion of mishap likelihood” in accordance with the ORM process. 

Third, the MDI methodology employs mathematics with ordinal numbers, via the 

MDI equation, to arrive at the final MDI score.  Kujawski and Miller (2009) point out 
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that performing mathematics on ordinal numbers to arrive at MDI values is not an 

acceptable practice and produces ambiguous results (Kujawski & Miller, 2009).  

Similarly, Hubbard (2014) purports that popular risk management methods that employ 

scores actually introduce error.  “Scores are merely ordinal, but many users add error 

when they treat these ordinal scores as a real quantity…a higher ordinal score means 

‘more’ but doesn’t say how much more” (Hubbard, 2014).  While presenting mission 

dependency on a 100-point scale is an attractive option, the approach utilized in obtaining 

these values may actually introduce additional error.   

The fourth limitation is the lack of analytical support in the development of the 

actual MDI equation.  Kujawski and Miller (2009), drawing from Edward Tufte’s (2006) 

book Beautiful Evidence, argue this point based on the assertion that the MDI 

methodology is the product of field-testing instead of documented analytical methods: 

The method for validation via field-testing is not described. Any analysis 
involving validating fitted polynomial curves of quantitative data requires, 
at a minimum, the number of samples collected, the raw data matrix, 
equations of the fitted models along with plotted curves and plotted raw 
data, quality of the fit of the curves and substantive meaning of the 
estimated models. 

There is limited documentation on the development of the MDI equation.  The 

MDI equation seems to take on the form of a “black box” that produces what appear to be 

reasonable values.  Unfortunately, the justification behind the weighting of the 

coefficients and the supporting evidence for the underlying phenomenon remains elusive.   
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USAF MDI Limitations 

Because USAF MDI scores were derived from Navy MDI scores (mapped via 

FAC codes), the limitations associated with the Navy MDI model also apply to the USAF 

implementation.  Given the nature of the USAF MDI implementation without data 

collection, additional issues were introduced compounding the inconsistencies and further 

deviating from the original intent of the MDI metric.  When the USAF first implemented 

MDI, the methodology was employed as an interim approach.  Today, it is generally 

understood across the USAF civil engineer career field that “MDI isn’t perfect” 

(Maddox, 2014).  Since the USAF’s implementation in 2008, specific limitations include 

the necessary MDI adjudication process, MDI inflation, discord across MAJCOM 

priorities, and biased assumptions.   

The first limitation is the fact that the interim MDI methodology, adapted from 

the Navy, produced arguably lower fidelity than what data collection from the field could 

have provided.  This interim solution led to the creation of the MDI adjudication process 

to correct MDI values.  This MDI adjudication process is, in a way, data collection from 

the field that requires resources in the way of time and manpower.  Furthermore, the MDI 

adjudication process is primarily focused on making sure that mission critical 

infrastructure (“tier 1”) has the appropriate MDI value (AFCEC, 2015).  Given an 

incorrectly assigned MDI value for mission critical infrastructure asset, base personnel 

would be motivated to navigate the MDI adjudication process to increase the MDI score.  

However, given an incorrectly assigned non-critical infrastructure asset, base personnel 

may not be motivated to invest the time and resources to decrease an asset’s MDI score.  

This leads to the second limitation, MDI inflation. 
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The second limitation is MDI inflation.  MDI inflation threatens to limit the 

metric’s contribution to decision support.  MDI values are intended to represent an index 

with a range of values between 0 and 100.  Nichols (2015) identifies that the range of 

MDI values within the USAF real property portfolio is actually between 32 and 99, 

which diminishes decision support value by compressing the real property assets into a 

smaller range of values.   

The third limitation is the natural discord between MAJCOMs perspectives on 

mission critical infrastructure.  Nichols (2015) presents that USAF MAJCOMs with 

unique mission sets do not necessarily fare as well as strictly operational MAJCOMs 

when MDIs are assigned based on CATCODE alone.  A specific example of this scenario 

is Air Education and Training Command (AETC) whose mission is to "recruit, train and 

educate Airmen to deliver airpower for America" (AETC, 2015).  The AETC mission 

requires facilities such as dorms, classrooms, and training facilities that may not have a 

CATCODE matched with a high MDI value.  For this reason, AETC facility MDI values 

may not accurately capture unique MAJCOM mission sets and support requirements.  

AFGSC is also an example of a MAJCOM with a unique mission set.  AFGSC’s mission 

is to “develop and provide combat-ready forces for nuclear deterrence and global strike 

operations…” (AFGSC, 2015).  AFGSC is responsible for Intercontinental Ballistic 

Missile (ICBM) operations with facilities that are spread out across large land areas.  As 

of August 2015, AFGSC had identified over 1,000 facilities with MDI values that did not 

adequately convey the mission criticality.  This is indicative of the inherent limitation 

with CATCODE-assigned MDI values as well as an unintended consequence with 

respect to the interim MDI methodology and specific MAJCOM mission sets.  This 
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situation was a significant driver in establishing the additional MDI adjudication process 

to correct MDI values (AFCEC, 2015). 

 The final MDI limitation is that of biased assumptions inherent in the MDI 

methodology.  A general assumption, given the USAF adaptation of the Navy’s MDI 

method, is that the Navy and USAF consider the same types of infrastructure mission 

critical.  Given the nature of the Navy’s mission, this assumption may not be true in all 

cases.  Another potential bias with the USAF MDI application is the assumption that all 

airfields are equally important.  This was codified by assigning an MDI of 99 to the 

CATCODE for airfield runways.  This rule has been in place since the implementation of 

the USAF MDI methodology.  Generally speaking, this rule is in direct agreement with 

USAF flying mission sets, however, not all missions identified in the USAF 2023 plan 

are tied to airfield runways (USAF, 2013).  Some installations with an extant airfield 

currently do not support missions that require an active runway.  This MDI rule is 

inconsistent with mission critical infrastructure priorities of MAJCOMS with non-flying 

missions.  The limitations associated with the USAF application of the MDI metric stem 

from a lack of data and MDI values that originated from an outside source. 

Data Facilitates Effective Asset Management 

Data is a proven force multiplier for effective management of real property 

portfolios.  Albrice, Branch, and Lee (2014) employ physical and financial attributes to 

(1) draw correlations between data sets, (2) identify patterns in the data, (3) classify and 

organize data into groups, (4) benchmark individual assets or facilities against Key 

Performance Indicators (KPIs), (5) and to establish prioritization schemes.  More 
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specifically, a business case for resource allocation decisions can be developed using 

correlations, patterns, and multivariate analyses with 18 pertinent facility attributes.  The 

18 facility attributes employed in resource allocation are listed in Table 5.  

Table 5.  Facility Attributes for Resource Allocation (Albrice et al., 2014) 

Attribute 
1 Age of the Facility 
2 Size of the Facility 
3 Reproduction Value (CRN) 
4 Mission Dependency Index 
5 Backlog of Deferred Maintenance (FCI) 
6 Capital Load over Tactical Horizon (5 years) 
7 Capital Load over Strategic Horizon (30 years) 
8 Adequate Replacement Reserves 
9 Ownership Structure (Freehold or Leasehold) 

10 Function 
11 Primary, Secondary and Tertiary Uses 
12 Number of Systems and Assets in the Facility 
13 Date of Last Condition Assessment 
14 Post-disaster Designation (PD) 
15 Revenue generating capacity and lease income 
16 Energy Use Intensity (EUI) and Efficiency (BEPI) 
17 Geographical Location and Bundled Co-locations 
18 Functional Obsolescence (FNI) 

 
 

Albrice et al. (2014) provide four examples of complex decisions that asset 

managers encounter.  The first question is continued investing in facility sustainment 

versus rebuilding with a new facility.  The second question deals with “adaptive renewal 

opportunities” and whether or not a specific infrastructure component should be replaced 

with a more efficient option.  The third question deals with running a component, asset, 

or facility to beyond its intended life span or, ultimately, running to failure.  The fourth 

question deals with determining an ideal ownership to leasehold ratio.  Additionally, the 

authors reveal that resource allocation decisions benefit from correlations identified 

between the variables (Albrice et al., 2014).  With these specific questions in mind, the 
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authors utilized the 18 pertinent data features and developed a nine-step multivariate 

decision support tool to build a business case for resource allocations.  This emphasizes 

the fact that databases are indispensable for effective asset management. 

Real Property Databases  

The DOD is accountable to the executive branch for implementing asset 

management principles as outlined in EO 13327.  One of the key tenets of asset 

management is the identification of real property inventory for accurate reporting 

(Vanier, 2001).  Communicating data across large organizations is a challenge and 

necessitates strict real property accountability and inventory reporting guidance. The 

guiding documents for Real Property Inventory (RPI) reporting are EO 13327 (2004), 

Federal Real Property Asset Management, Department of Defense Instruction (DODI) 

4165.70 (2005), Real Property Management, and DODI 4165.14 (2014), Real Property 

Inventory and Forecasting.  Additionally, the FRPC publishes annual guidance for federal 

agency real property inventory and reporting.  Execution of these real property inventory 

and reporting requirements necessitates agency-specific information systems and 

databases for real property records.  Each agency’s real property database represents a 

catalog of facts about specific infrastructure assets.  With existing data mining 

techniques, real property databases may serve as a potential source of un-tapped 

knowledge for infrastructure mission criticality. 
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Navy Real Property Data 

The Navy’s real property inventory is governed by document P-78, Real Property 

Inventory (RPI) Procedures Manual (NAVFAC, 2008a).  P-78 was developed in 

accordance with requirements under EO 13327 and describes the Navy’s official real 

property database known as the internet Navy Facilities Asset Data Store (iNFADS).  The 

iNFADS database is “the system which provides the means by which data on Navy and 

Marine Corp property is collected, processed, stored and displayed for its facilities” 

(NAVFAC, 2008a). 

USAF Real Property Data 

Following the implementation of asset management within the federal 

government via EO 13327, the USAF incorporated the major changes and vision of asset 

management in Air Force Policy Directive (AFPD) 32-90, Real Property Asset 

Management (USAF, 2007).  The AFPD outlines the asset management vision and 

inventory reporting requirements with the following (USAF, 2007): 

The Air Force will maintain an accurate inventory of its real property in 
accordance with Federal Real Property Council, DOD, and Air Force 
instructions.  Real property used by the Air Force will be reported on the 
annual Air Force Financial Statement.  The Air Force will record fiscal, 
physical, legal, environmental, and geospatial information on real property 
assets to which the Air Force has legal interest.  Data from real property 
inventories and accountability will serve as the basis for current 
sustainment and future capital investments. 

AFI 32-9005, Real Property Accountability and Reporting (2008), is the 

implementation document that fulfills directives from AFPD 32-90, DODI 4165.70, and 

DODI 4165.14.  Additionally, AFCEC developed the Real Property Accountability and 
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Inventory Playbook (2014b) to provide installation Real Property Officers (RPO) with 

support and guidance on the tasks associated with USAF real property accountability.   

Similar to the Navy’s iNFADS system, the USAF employs the Automated Civil 

Engineer System, which is defined with the following excerpt from AFI 32-9005.   

ACES (Automated Civil Engineer System)—The current system used by 
civil engineering personnel to account for and manage AF assets. ACES is 
the original ‘book of entry’ for financial accounting in terms of original 
acquisition cost and cost of any major improvements over the statutory 
threshold under the Chief Financial Officers Act of 1990.  

The ACES Real Property module, ACES-RP, serves as the USAF’s official real property 

database of record (USAF, 2008). 

Knowledge Discovery in Databases (KDD) 

In the 1990s, the booming data paradigm drove an “urgent need” for “tools to 

assist humans in extracting useful information from the rapidly growing volumes of 

digital data” (U. Fayyad, Piatetsky-Shapiro, & Smyth, 1996a).  An entire field known as 

Knowledge Discovery in Databases (KDD) was born out of the new data analysis 

limitations as manual data analysis across a myriad of fields was quickly becoming 

unrealistic.   

Fayyad, Piatetsky-Shapiro, and Smyth authored an article in 1996 that  provides 

an overview of the field of KDD: Knowledge Discovery in Databases for Extracting 

Useful Knowledge from Volumes of Data (U. Fayyad, Piatetsky-Shapiro, & Smyth, 

1996b).  The authors purport that large databases are not inherently valuable and label 

them as a “dormant potential resource” (U. Fayyad et al., 1996b).  KDD aims to rectify 

this database dormancy by discovering useful knowledge through a deliberate process.  
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The authors define the KDD process as “the nontrivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data” (U. Fayyad et al., 

1996b).  The KDD process includes the following nine steps: (1) learning the application 

domain, (2) creating a target data set, (3) data cleaning and preprocessing, (4) data 

reduction and projection, (5) choosing the function of data mining, (6) choosing the data 

mining algorithms, (7) data mining, (8) interpretation, and (9) using discovered 

knowledge (U. Fayyad et al., 1996b).  To emphasize the importance of a process-centered 

approach, the authors maintain that applying data mining techniques without 

implementing the other KDD steps is “dangerous” and can lead to identifying 

“meaningless patterns” (U. Fayyad et al., 1996b).   

Of the nine KDD steps, the data mining step is the true crux of knowledge 

discovery.  There are two primary goals in data mining, (1) prediction and (2) description 

or inference (U. Fayyad et al., 1996b).  These goals cater to different applications and 

data mining techniques.  Additionally, the authors point out some noteworthy challenges 

encountered in the data mining realm at the time of publication.  These challenges 

included: (1) massive databases and high dimensionality, (2) user interaction and prior 

knowledge, (3) overfitting and assessing statistical significance, (4) missing data, (5) 

understandability of patterns, (6) managing changing data and knowledge, (7) integration 

with other systems, and (8) nonstandard, multi-media, and object oriented data (U. 

Fayyad et al., 1996b).  Because this article was published in 1996, the momentum in data 

mining research has fostered progress in these areas of concern.   
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Data Mining Background 

Computer system technologies have greatly increased over the past half-century 

serving as a catalyst for innovative solutions to complex problems.  Driven by this 

technology wave, the tools of the trade in the data science world are continually evolving.  

“Traditionally, it was the responsibility of business analysts, who generally use statistical 

techniques” (Bose & Mahapatra, 2001).  

Furthermore, data science exploded following the introduction of the internet to 

general users in 2000 (Liao, Chu, & Hsiao, 2012).  This paradigm shift in the world of 

information necessitated more effective and efficient methods of knowledge management 

technologies.  IBM reports that 2.5 quintillion bytes of data are created every day and that 

“90% of the data in the world today has been created in the last two years alone” (IBM, 

2015).  This proliferation of data and databases necessitates what are coined as “data 

mining” techniques in order to use “information and knowledge intelligently” (Liao et al., 

2012).    

Data Mining Literature Review 

Liao, Chu & Hsiao (2012) conducted a literature review using five journal 

databases and a keyword search for “data mining technique” ultimately identifying 

14,972 articles authored between 2000 and 2011.  This team then narrowed down the 

pool to 216 articles from 169 journals, all of which related specifically to “data mining 

application.”  Of these articles, the authors identified nine categories of data mining 

applications: (1) neural networks, (2) algorithm architecture, (3) dynamic prediction-

based, (4) analysis of systems architecture, (5) intelligence agent systems, (6) modeling, 



47 

(7) knowledge-based systems, (8) system optimization, and (9) information systems (Liao 

et al., 2012).  The time period analyzed in this literature is significant due to dynamic 

nature of progress in the field of data mining.    

Advances in computer technology and the proliferation of data bases promote and 

necessitate data mining techniques in order to use “information and knowledge 

intelligently” (Liao et al., 2012).   Data mining techniques are broken into numerous 

methods including generalization, characterization, classification, clustering, association, 

data visualization, among others.  Additionally, there are multiple types of databases 

these techniques can be applied to: relational, transactional, object oriented, spatial and 

active databases, and global information systems (Liao et al., 2012).  A noteworthy 

milestone in the history of data mining was the introduction of the Internet to general 

users, which drastically increased the availability of information and communication 

technology (Liao et al., 2012).  In their literature review, Liao et al. (2012) identified key 

trends in data mining techniques based on a keyword search from a selection of journal 

articles. Table 6 presents the data mining trends. 

Table 6.  Data Mining Keyword Trends, 2000-2011  (Liao et al., 2012). 

 

These keyword trends provide an indication of both the progression of data mining 

techniques for the selected time period.  Data mining, decision tree, and artificial neural 
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networks claim the top three positions with respect to total usage.  Furthermore, the 

keyword frequencies indicate a noticeable increase over the 10-plus year time period.   

Over time, data mining has proven its value and applicability across a myriad of 

applications.  The articles analyzed in the Liao et al. (2012) literature review span many 

disciplines including engineering, biology, medicine, finance, social sciences and 

business.  Liao et al. (2012) predict that going forward, data mining techniques will 

continue to progress and become “more expertise-oriented” and “problem-centered.”  

Given that real property databases exist for both the Navy and Air Force, there are many 

data mining algorithms that could be applied to the MDI problem. 

Chapter Summary 

This literature review provided a history of the federal government’s shift to asset 

management principles, outlined federal agency MDI methodologies, presented 

limitations and purported fallacies associated with MDI and, lastly, presented KDD and 

machine learning as a mechanism for further understanding of the relationships between 

MDI and real property data.  Linking real property assets to mission criticality is a highly 

complex task.  As such, there is no agreed upon methodology for assigning mission 

criticality to real property assets within the public or private sector.  Further investigation 

is warranted and currently available real property data may provide a better 

understanding of existing prioritization methods.  The next chapter presents the 

methodology for investigating the connection between real property data and mission 

dependency.  
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III.  Methodology 

Chapter Overview 

This chapter introduces the knowledge discovery in databases (KDD) process as 

the overarching framework employed in answering the five research questions.  Next, the 

chapter discusses the specific procedures and rationale behind steps one through five of 

the KDD process leading up to the analysis and data mining specific steps.  The 

subsequent chapter presents the data mining analysis and results from steps six through 

nine of the KDD process.   

Knowledge Discovery in Databases (KDD) 

The explosive growth of technology and data over recent decades serves as the 

motivation for a codified knowledge discovery process specific to databases (U. Fayyad 

et al., 1996b; Frawley, Piatetsky-Shapiro, & Matheus, 1992).  KDD is a holistic approach 

aimed at discovering knowledge from data (U. Fayyad et al., 1996b).  Maimon and 

Rokach (2005) describe KDD as “an automatic, exploratory analysis and modeling of 

large data repositories.”  While KDD is sometimes considered synonymous with data 

mining, KDD encompasses numerous fields of study including machine learning, pattern 

recognition, statistics, artificial intelligence, data visualization, and information retrieval 

(Frawley et al., 1992).  Furthermore, Fayyad et al. (1996a) purport that KDD is 

distinguishable from other fields because KDD is focused on the overarching process 

necessary for knowledge discovery.   
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The KDD process includes nine steps: (1) learning the application domain and 

establishing goals, (2) creating a target data set, (3) data cleaning and preprocessing, (4) 

data reduction and projection, (5) choosing the function of data mining, (6) choosing the 

data mining algorithms, (7) data mining, (8) interpretation and evaluation, and (9) using 

the discovered knowledge (U. Fayyad et al., 1996b).  Prior to delving into the KDD 

process, pertinent definitions are necessary to understand the methodology.  Fayyad et al. 

(1996a) present the following definitions associated with KDD:  

KDD is defined as the nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns in data. 

Data are defined as a set of facts. 

Patterns are defined as an expression in some language describing a 
subset of the data or a model applicable to the subset.   

Process implies that KDD comprises many steps, which involve data 
preparation, search for patterns, knowledge evaluation, and refinement, all 
repeated in multiple iterations. 

Nontrivial refers to the fact that some search or inference is involved; that 
is, it is not a straightforward computation of predefined quantities like 
computing the average value of a set of numbers.   

Step 1:  Learn the Application Domain and Establish Goals  

The first step of the KDD process is to learn the application domain and define 

the knowledge discovery goals.  In this research, the application domain is the USAF’s 

current implementation of the MDI metric as a derivative of the Navy’s MDI 

methodology.  Chapter two provides a comprehensive literature review for the 

application domain.  The literature review covers the background of asset management 

principles, the MDI methodologies implemented in the Navy and USAF, and existing 

limitations with the USAF MDI implementation.  The literature review serves as the 
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foundation for the overarching knowledge discovery process.  Next, knowledge discovery 

goals are necessary to guide the overarching KDD process.  There are two goals for this 

MDI knowledge discovery research:  

1. Infer relationships between real property data and mission critical 
infrastructure.  

2. Predict mission critical infrastructure using real property data. 

The first goal is inference-based and seeks to use the data and supervised learning 

techniques to better understand relationships between real property data and mission 

critical infrastructure.  Because military services are required to maintain accurate and 

current real property records, a plethora of real property data is available.  Currently, 

relationships between real property data elements and mission critical infrastructure are 

not codified or well understood.  Newfound knowledge of potential relationships between 

real property data and mission critical infrastructure could enable the use of rules or 

heuristics to facilitate identification of mission critical infrastructure and generally 

improve the existing body of knowledge.    

The second goal is to predict mission critical infrastructure by training a 

supervised learning model using real property data.  Mission critical infrastructure is 

defined as infrastructure with an MDI value greater than or equal to 85 (AFCEC, 2015).  

A predictive model that can reliably identify mission critical infrastructure has the 

potential to facilitate the MDI adjudication process and overall validation of the vast 

USAF real property inventory.  Accomplishing this objective will benefit the civil 

engineer career field by significantly reducing person-hours currently required for manual 

MDI reviews. 
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Step 2:  Creating a Target Data Set  

The second step of the KDD process is to create a target data set.  This MDI 

knowledge discovery research employs two target data sets.  The two data sets consist of 

Navy and Air Force real property from the respective real property databases of record.  

Real property data is comprised of facts pertaining to specific facilities and infrastructure.  

Because real property inventory reporting is required within the federal government, 

every branch of the DOD maintains a database with current real property data.  The two 

target data sets consist of a matrix with facilities in rows and real property features in 

columns.  The labels corresponding to each infrastructure asset are the MDI values 

obtained via the Navy MDI methodology for stakeholder input.  The existing real 

property data features represent the potential to predict mission critical infrastructure and 

reveal relationships with mission critical infrastructure.   

Air Force Data Set 

The USAF MDI beta test represents the only data collection effort undertaken to date 

with the express objective of identifying MDI values for specific infrastructure assets 

through subject matter expert insight.  As such, this data constitutes the most thorough 

assessment of USAF facility mission criticality available.  The MDI beta test included 

both Fairchild AFB and Langley AFB.  Multiple attempts to obtain the Langley AFB data 

proved unsuccessful.  Personnel at the USAF Civil Engineer School at Wright-Patterson 

AFB provided the Fairchild AFB MDI beta test data in a CSV file.  The original Fairchild 

data set contains 571 observations and 17 data features from the MDI survey data 

collection effort.  The data from the 2008 beta test does not include real property data.  

Table 7 displays the original MDI beta test data features. 
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Table 7.  Original MDI Beta Test Data Features  

Feature Name Data Type 
MDI Integer 
HOST INSTALLATION CODE Text 
INSTALLATION Text 
TENANT Logical 
FUNCTIONAL AREA Text 
FACILITY NUMBER Integer 
FACILITY NAME Text 
MDI QUESTION 1 Letter 
MDI QUESTION 2 Letter 
MDb AVERAGE Numeric 
n  Integer 
Surveyor Text 
Surveyor Group Number 
Group ID Number 
Interview Date Date 

 

In order to evaluate the Fairchild infrastructure MDI values against the 

corresponding real property data, the beta test data is merged with the most current 

(FY15) real property data from ACES-RP.  ACES support personnel located at Maxwell-

Gunter Annex provided FY15 real property data for Fairchild AFB.  The two CSV files 

provided from ACES-RP contain standardized real property data by facility and are titled 

“Fairchild RT_FACILITIES” and “Fairchild RT_REAL_PROPERTY_ASSETS”, 

respectively.  The original “Fairchild RT_Facilities” file contains 812 observations and 

35 features.  The original “Fairchild_RT_REAL_PROPERTY_ASSETS” file contains 

935 observations and 34 features.  The original ACES-RP data sets contain redundant 

features, unique identifiers, textual information, and many missing entries.  Significant 

preprocessing is necessary to prepare the USAF data set for analysis.  The original data 

features for the two Fairchild AFB real property data sets are listed in Table 8 and Table 

9, respectively. 
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Table 8.  “Fairchild RT_FACILITIES” Original Data Features 

Feature Name Data Type 
RPUID Integer 
ACES_INSTALLATION_CD Text 
ACES_FACILITY_NBR Integer 
FACILITY_NBR Integer 
CIP_PHASE_YN Logical 
CONSTRUCT_MATERIAL_CD Text 
CONSTRUCT_TYPE_CD Text 
ADA_COMPLIANCE_CD Text 
BOOK_VALUE Integer 
BUILT_DT Date 
CURRENT_PERIOD_DEP_AMT Integer 
EST_USE_LIFE_ADJ_QTY Integer 
EST_USE_LIFE_QTY Integer 
HEIGHT_QTY Integer 
HEIGHT_UOM Text 
HOUSING_ATTRIBUTE_CD Text 
LENGTH_QTY Integer 
LENGTH_UOM Text 
MODULE_QTY Integer 
PLANT_REPLACEMENT_VALUE Integer 
REPLACEMENT_DEPT_REG_CD Integer 
REPLACEMENT_FUND_CD Integer 
REPLACEMENT_SUB_ACCT_CD Integer 
REPLACEMENT_ORG_CD Integer, Text 
RESTORE_MOD_DEPT_REG_CD Integer 
RESTORE_MOD_FUND_CD Integer 
RESTORE_MOD_SUB_ACCT_CD Integer 
RESTORE_MOD_ORG_CD Integer, Text 
TOT_ACCUM_DEP_AMT Integer 
TOT_CAPITAL_IMP_COST Integer 
WIDTH_QTY Integer 
WIDTH_UOM Text 
FLOOR_ABOVE_GROUND_QTY Integer 
FLOOR_BELOW_GROUND_QTY Integer 
PHYSICAL_QUALITY_RATE Integer 
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Table 9.  “Fairchild RT_REAL_PROPERTY_ASSETS” Original Data Features 

Feature Name Data Type 
RPUID Integer 
ACES_INSTALLATION_CD Text 
ACES_FACILITY_NBR Integer 
SITE_UID Integer 
ANNUAL_OPERATING_COST Integer 
COMMAND_CLAIMANT_CD Integer, Text 
CONSTRUCT_AGENT_CD Text 
CURRENT_USE_FUNC_CAP_CD Text, Integer 
DEPTH_QTY Integer 
DEPTH_UOM Text 
DESCRIPTION Text 
FINANCIAL_REPORTING_ORG_CD Integer, Text 
HISTORIC_STATUS_CD Text 
HISTORIC_STATUS_DT Date 
INTEREST_TYPE_CD Text 
MISSION_DEPENDENCY_CD Text 
NEIGHBORHOOD_NAME Text 
OPERATIONAL_STATUS_CD Text 
PRED_CURRENT_USE_CAT_CD Integer 
PRED_CURRENT_USE_FAC_CD Integer 
PRED_DESIGN_USE_CAT_CD Integer 
PRED_DESIGN_USE_FAC_CD Integer 
PREPONDERANT_USING_ORG_CD Integer, Text 
RPA_NAME Text 
RPA_TYPE_CD Text 
SALVAGE_VALUE_AMT Integer 
SALVAGE_VALUE_REASON_CD Text 
SERVICE_DT Date 
TOTAL_UOM Text 
TOTAL_UOM_QTY Integer 
UTILIZATION_RATE Integer 
RPA_SUSTAINABILITY_CD Integer 
COST_SHARING_PARTNERS Text 
TARGET_ASSET_OWNER_ORG_CD Integer, Text 

 

 

Navy Data Set 

Navy facilities are evaluated via the Navy’s MDI methodology, which means that 

the current Navy real property records reflect MDI values derived from stakeholder input.  

Navy real property personnel at the Pentagon provided a CSV file with the entire real 

property inventory for the Navy.  While the data set consisted of a high number of 
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observations (infrastructure assets), the real property data features were limited to a 

subset of features.  The original Navy data set contained 119,275 observations and 10 real 

property data features (including MDI).  The Navy data set contains far fewer features 

than the USAF real property data set.  Despite containing fewer features, preprocessing 

of the Navy data set is necessary in step three of the KDD process to prepare the data for 

analysis.  The original Navy real property features are listed in Table 10.  

Table 10. Original Navy Data Features 

Feature Name Data Type 
REGION Letters 
UIC Numbers and Letters 
INSTALLATION_NAME Text 
FAC Integers 
CATEGORY_CODE Integers 
UM Letters 
MEASUREMENT Integers 
PRV Integers 
MDI Integers 
FACILITY NAME Text 

 

Step 3:  Data Cleaning and Preprocessing 

The third step of the KDD process is data cleaning and preprocessing.  The 

importance of data cleaning and preprocessing cannot be overstated as this step enhances 

the reliability of the data (Maimon & Rokach, 2005).  In research literature, the data 

mining step of the KDD process garners much of the attention, however, Fayyad et al. 

(1996a) purport that the data preprocessing step is equally important.  For useful results, 

data mining requires clean and accurate data (Maletic & Marcus, 2010).  The data 

cleansing process includes defining and determining error types, searching and 

identifying error instances, and correcting any uncovered errors (Maimon & Rokach, 
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2005).  Common concerns in data cleaning and preprocessing include dealing with 

outliers, noisy and missing data, and data types (U. Fayyad et al., 1996b).  Additionally, 

data cleaning and preprocessing is a necessary precursor to data mining because errors 

are common in large data sets (Maletic & Marcus, 2010).  Fayyad et al. (2003) convey 

that 40 percent of all collected data contain errors.  As such, extracting and manipulating 

data is often where the majority of time is spent in the KDD process (U. M. Fayyad et al., 

2003).  The data cleaning and preparation process is iterative and typically occurs 

throughout the KDD process as new findings are identified and different techniques are 

applied.  A commonly shared statistic is that approximately 80 percent of data analysis is 

spent on cleaning and preparing the data (Wickham, 2014).   

USAF Data Set 

Because the USAF target data set is composed of three distinct data sets, 

significant preprocessing is required to merge and investigate potential issues.  The target 

data set requires distinct infrastructure assets as observations with corresponding real 

property data features.  Correctly merging the features from the three data sets for 

specific facilities is a major concern for the USAF target data set.  The two ACES-RP 

data sets contain real property unique identifiers (RPUIDs), which offer a distinct link for 

merging the two data frames.  The MDI beta test data, however, does not contain 

RPUIDs and the data set must be merged with the ACES-RP data by facility number.  

Some data features were removed altogether due to missing data and some features were 

altered to better suit the data mining application.  One example is the “age” feature, 

which is derived from the service date by calculating the difference in the service year 

and the current year.  As another example, the facility class and category group features 
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are not standalone features in the RP data and must be derived from four-digit FAC 

codes.  The facility class is the first digit of the FAC code and the category group is the 

first two digits of the FAC code.   As such, the facility class and category group features 

were created by parsing the first digit and the first two digits from the FAC code feature, 

respectively.  As a third example, since the total unit of measure quantity is reported 

against different units of measure for different infrastructure asset types,  the numeric 

values for the measurement quantity are standardized to have a mean of zero and a 

standard deviation of one.  This processing step rectifies the issue of inconsistent units.  

After the data cleaning and preprocessing phase, the USAF target data set contains 304 

observations and 45 features.  Table 11 displays the USAF data set features and class 

types after preprocessing; “MC” is the mission critical response variable where “MC” 

indicates an MDI of 85 or higher and “nonMC” indicates MDI below 85.   

 

 

 

 

 

 

 

 

 



59 

Table 11.  USAF Data Set Features 

Feature Name Class Type 
MDI Integer 
MC Factor, 2-levels 
CONSTRUCT_MATERIAL_CD Factor, 14-levels 
CONSTRUCT_TYPE_CD Factor, 3-levels 
ADA_COMPLIANCE_CD Factor, 2-levels 
BOOK_VALUE Numeric 
CURRENT_PERIOD_DEP_AMT Numeric 
EST_USE_LIFE_QTY Factor, 2-levels 
HEIGHT_QTY Numeric 
LENGTH_QTY Numeric 
WIDTH_QTY Numeric 
DEPTH_QTY Integer 
PLANT_REPLACEMENT_VALUE Numeric 
REPLACEMENT_DEPT_REG_CD Factor, 3-levels 
REPLACEMENT_FUND_CD Factor, 6-levels 
REPLACEMENT_SUB_ACCT_CD Factor, 2-levels 
RESTORE_MOD_DEPT_REG_CD Factor, 3-levels 
RESTORE_MOD_FUND_CD Factor, 8-levels 
RESTORE_MOD_SUB_ACCT_CD Factor, 2-levels 
RESTORE_MOD_ORG_CD Factor, 9-levels 
TOT_ACCUM_DEP_AMT Numeric 
FLOOR_ABOVE_GROUND_QTY Factor, 6-levels 
FLOOR_BELOW_GROUND_QTY Factor, 2-levels 
PHYSICAL_QUALITY_RATE Integer 
BOOK_VALUE_ZERO Factor, 2-levels 
Age Numeric 
age.over45 Factor, 2-levels 
ANNUAL_OPERATING_COST Numeric 
COMMAND_CLAIMANT_CD Factor, 2-levels 
CONSTRUCT_AGENT_CD Factor, 2-levels 
FINANCIAL_REPORTING_ORG_CD Factor, 4-levels 
HISTORIC_STATUS_CD Factor, 4-levels 
OPERATIONAL_STATUS_CD Factor, 4-levels 
PREPONDERANT_USING_ORG_CD Factor, 10-levels 
RPA_TYPE_CD Factor, 3-levels 
TOTAL_UOM Factor, 10-levels 
TOTAL_UOM_QTY Numeric 
UTILIZATION_RATE Integer 
RPA_SUSTAINABILITY_CD Factor, 2-levels 
ANNUAL_OPERATING_COST_ZERO Factor, 2-levels 
CONSTRUCT_AGENT_CD_USACE Factor, 2-levels 
facilityClass Factor, 7-levels 
categoryGroup Factor, 25-levels 
utilization Factor, 3-levels 
costShare Factor, 2-levels 
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The number of observations in the USAF data set is low for a machine learning 

application.  This presents a potential limitation as there may not be enough examples 

from which the algorithm can “learn” and generalize to unseen data.  Additionally, there 

are many features in the USAF RP data.  As such, deliberate actions are necessary to 

minimize the number of features through feature selection techniques.      

Navy Data Set 

The cleaning and preprocessing for the Navy data set is far less complex than the USAF 

data due to the single data frame and far fewer features.  The primary data preprocessing 

actions included parsing the facility class and category group features from the FAC 

codes and standardizing the measurement quantity by the corresponding unit of measure.  

After the data cleaning and preprocessing phase, the Navy target data set contains 81,224 

observations in rows and six features in columns.  The number of observations is 

promising for model training; however the low number of real property features presents 

a possible limitation for both prediction and inference if the features are not significantly 

associated with the response.  Table 12 displays the data features and class types; “MC” 

is the response variable indicating whether or not the asset is mission critical.   

Table 12.  Navy Data Set Features 

Feature Name Class Type 
MC Factor, 2-levels 
UM Factor, 19-levels 
MEASUREMENT Numeric 
PRV Integer 
facilityClass Factor, 8-levels 
categoryGroup Factor, 39-levels 
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Step 4:  Data Reduction and Projection 

The data reduction and projection step is focused on determining useful features 

in the dataset and using dimensionality reduction or transformation methods to minimize 

the number of data features (U. Fayyad et al., 1996b).  Transforming the data may also be 

required in this step depending on the data, task, and methods employed.  The data 

reduction and projection step is an iterative process and varies based on the application 

(Maimon & Rokach, 2005).   

USAF Data Set 

Given the high number of features and low number of observations in the USAF 

data set, dimension reduction is an important consideration.  This research pursues the 

use of three filter feature selection methods in order to minimize the number of features 

employed in modeling.  The filter methods include RELIEF-F, Correlation Based Feature 

Selection (CFS), and information gain.  Each of the filter method functions are employed 

using the “FSelector” package in the R programming language (Romanski & Kotthoff, 

2014).  Also, a wrapper method, known as recursive feature selection (RFE), is employed 

with the random forests algorithm to identify a subset of optimal features.  RFE is 

employed through the caret data mining package also in R (Kuhn, 2012).  Feature 

selection techniques are employed with the training data.   

The RELIEF-F feature selection method produces weights corresponding to each 

feature in the data set.  The features are stratified by their weightings where higher values 

are indicative of better features.  This feature selection method does not automatically 

identify the number of features to use in modeling so a cutoff must be selected.  Two 
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subsets are selected using the RELIEF-F feature selection method.  The first RELIEF-F 

subset, referred to as subset one, includes the five highest weighted features: (1) Category 

Group, (2) Facility Class, (3) Preponderant Using Organization Code, (4) Replacement 

Organization Code, and (5) Utilization Rate.  The second RELIEF-F subset, referred to as 

subset two, is based on the significant difference between feature weights and includes 

the top three features: (1) category group, (2) facility class, and (3) preponderant using 

organization code.  Based on the RELIEF-F filter method, the top three features are 

categorical features that correspond to the facility function and the organization 

associated with the facility, respectively.   

The CFS feature selection method uses entropy and correlation measures to select 

an optimum feature subset.  The CFS filter yielded a subset of seven categorical and 

numeric features, referred to as subset three, and includes the following attributes: (1) 

book value, (2) height quantity, (3) length quantity, (4) total accumulated depreciation 

amount, (5) preponderant using organization code, (6) total unit of measure quantity, and 

(7) cost sharing.   

The information gain filter method produces weights for all features where the 

highest weight is the most important feature.  Again, a cutoff of five features is employed 

to select the optimum features.  The information gain feature subset, referred to as subset 

four, includes (1) category group, (2) height quantity, (3) replacement organization code, 

(4) preponderant using organization code, and (5) length quantity.  The common themes 

among the filter methods include the facility function, the using organization, and 

physical attributes.   
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The RFE method with random forest provides a fairly large subset with 15 

features.  The subset includes both categorical and numeric features.  The RFE feature 

subset, referred to as subset five, includes the following attributes: (1) category group, (2) 

length, (3) height, (4) plant replacement value, (5) total accumulated depreciation 

amount, (6) book value, (7) total unit of measure quantity, (8) replacement organization 

code, (9) width, (10), current period depreciation amount, (11) cost sharing, (12) total 

unit of measure, (13) facility class, (14) floor above ground quantity, and (15) 

construction material code. 

Five themes emerged from the four feature selection methods employed.  The 

themes include infrastructure function, physical attributes, financial characteristics, 

organizational characteristics, and infrastructure utilization rate.  Figure 13 displays the 

feature selection results and corresponding themes across the four feature selection 

methods. 

 

Figure 13.  USAF Data Set Feature Selection Results 
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Navy Data Set 

The target Navy data set mirrors the requirements for the USAF data set where 

infrastructure assets are in rows and real property features in columns.  Because the Navy 

data set contains far fewer features than the USAF data set, data reduction and projection 

is not a significant of a concern.  The four primary features suitable for analysis include 

measurement, plant replacement value, facility group (first digit of FAC code), and 

category group (first two digits of FAC code).  The facility group and category group are 

correlated as the first digit represents the same facility “group” for both features.  The 

category group has a relatively high number of factor levels at 39, which increases the 

computational complexity.  Using further break outs of the function codes (e.g. four-digit 

FAC codes) is computationally prohibitive due to the high number of factor levels.  

Given the small number of features with the Navy data set, no feature selection 

algorithms are employed. 

Step 5:  Choosing the Data Mining Task 

There are two distinct data mining tasks in this research.  The first data mining 

objective is to identify and describe relationships in the real property data with respect to 

mission critical infrastructure.  The second data mining objective is to predict mission 

critical infrastructure using real property data.  These objectives are pursued as a 

supervised learning classification task.  AFCEC defines “mission critical” as an MDI 

greater than or equal to 85 (AFCEC, 2015).  This definition facilitates discretization of 

MDI values to two levels, “mission critical” (85 or higher) or “non-mission critical” (84 
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or lower).  With these labels, the problem qualifies as a binary classification task where 

the positive class is “mission critical” and the negative class is “non-mission critical”.  

Classifiers are unique in that high accuracy does not necessarily guarantee that the 

intended objectives are met.  As such, accuracy is not the optimum measure of success.  

For prediction of mission critical infrastructure, emphasis is placed on the sensitivity 

associated with classifying the positive class, “mission critical”.  Therefore, the objective 

is to train a classifier with minimum sensitivity and specificity values of 0.8 on test data.  

More concretely, a successful classifier should have a minimum 80-percent true positive 

and true negative rate.  A classifier meeting these specifications has the potential to serve 

as a decision support tool to facilitate identification of MDI discrepancies, thereby 

minimizing the number of facilities for adjudication review. 

A secondary objective with the classification task is inference.  Inference pursues 

a deeper understanding of the relationships between the predictors and the response 

variable.  Inference provides valuable insight into the “why” associated with the model 

and underlying phenomenon.  Alternatively, a “black box” classifier with high predictive 

accuracy offers limited knowledge discovery value.  Understanding how a model is 

employing predictors to classify mission critical infrastructure is central to true 

knowledge discovery.  By identifying important features and the relationships between 

the features and the mission critical classification, civil engineers can better understand 

the intuitions associated with critical infrastructure.   
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Evaluating Classifiers 

Classification algorithms are often evaluated by the accuracy on the test set, 

however, additional metrics are useful in evaluating classifiers.  Confusion matrices are 

the standard tool utilized in evaluating classifier effectiveness.  In binary classification, a 

confusion matrix identifies the classifications based on positive and negative class 

assignments.  In the case of MDI, mission critical (“MC”) is the positive class and non-

mission critical (“nonMC”) is the negative class.  The four possible classification 

outcomes are (1) true positive (TP), (2) true negative (TN), (3) false positive (FP), and (4) 

false negative (FN).  True positives occur when the classifier correctly classifies an 

observation as positive and true negatives occur when a classifier correctly classifies an 

observation as negative.  Alternatively, false positives occur when the classifier 

incorrectly classifies an observation as positive and false negatives occur when the 

classifier incorrectly classifies an observation as negative.  Table 13 presents the four 

classifier outcomes in a notional confusion matrix.    

Table 13.  Notional Confusion Matrix 

 Predicted Class 
Negative Positive Total 

True Class 

Negative True Negative 
(TN) 

False Positive 
(FP) N 

Positive False Negative 
(FN) 

True Positive 
(TP) P 

Total N P  
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Classifier diagnostic metrics are derived from the four outcomes presented in the 

confusion matrix in Table 13.  For example, accuracy is calculated by adding the total 

number of true positives and true negatives and dividing by the total number of 

observations.  Next, specificity and sensitivity present class-specific performance (James 

et al., 2013).  Sensitivity is known as the true positive rate, which equates to the true 

positives divided by the sum of the true positives and false negatives.  Specificity is 

known as the true negative rate, which is the number of true negatives divided by the sum 

of the true negatives and false positives.  Furthermore, precision is the positive predictive 

value, which is calculated by dividing the number of true positives by the sum of the true 

positives and false positives.  Alternatively, the negative predictive value is the number 

of true negatives divided by the sum of the true negatives and false negatives.  In 

classification tasks, the accuracy may not be the best method of determining the costs and 

benefits associated with a given classifier due to the lack of information about the false 

positive and false negative predictions.     

Receiver Operating Characteristics Curve 

The receiver operating characteristics (ROC) curve is an effective means of 

presenting the overall performance of a classifier (James et al., 2013).  A ROC curve 

plots the false positive rate on the x-axis and the true positive rate on the y-axis.  A 

notional ROC curve is presented in Figure 14. 
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Figure 14.  Notional ROC Curve 

The metric associated with ROC curves is known as the area under the curve 

(AUC).  “ROC curves are useful for comparing different classifiers, since they take into 

account all possible thresholds” (James et al., 2013).  Furthermore, Huang and Ling 

(2005) conclude that AUC is superior to accuracy for classifier comparison.  A good 

classifier will have a curve close to the top left corner, which is indicative of a high true 

positive rate and low false positive rate.  The diagonal line across the plot indicates an 

AUC value of 0.5, which is considered a minimally effective classifier comparable to a 

coin toss.  An AUC value of 1.0 is indicative of a perfect classifier.    
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Chapter Summary 

This chapter presented steps one through five of the KDD process with specific 

actions taken as precursors to the data mining analysis.  The USAF and Navy data sets 

are preprocessed to include infrastructure assets in rows and real property features in 

columns.  The binary response variable indicates that an observation is “mission critical” 

or “non-mission critical” based on the MDI mission critical threshold of 85.  With the 

target data sets prepared in tidy data frames, the remaining steps of the KDD process are 

executed; step six encompasses algorithm selection, step seven is implementation, step 

eight is interpretation and evaluation, and step nine is using the knowledge.  The next 

chapter presents the analysis and results of the data mining-specific steps pursuant to the 

two KDD goals, inference and prediction.  
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IV.  Analysis and Results 

Chapter Overview 

This chapter presents the analysis and results of the data mining-specific steps in 

the KDD process.  The goals of the KDD process are to (1) infer relationships between 

real property data and mission critical infrastructure and (2) to classify mission critical 

infrastructure using real property data.  Specific results are addressed for both the Air 

Force and Navy data sets within the context of the two KDD goals.   

Step six of the KDD process entails data mining algorithm selection, step seven is 

the data mining implementation, step eight is interpretation and evaluation, and step nine 

is using the knowledge.  Steps six through eight of the KDD process are combined due to 

the integrated nature of the procedures.  The data mining analysis first employs numerous 

classification paradigms with differing strengths and weaknesses.  Specifically, tradeoffs 

between the different classifiers include flexibility, interpretability, and computational 

complexity.  The classification models investigated include logistic regression, linear 

discriminant analysis, quadratic discriminant analysis, k-nearest neighbors, generalized 

additive models, and multiple classification tree algorithms.  The classification tree 

models span bagging, boosting, random forests, and C5.0.  General descriptions of the 

learning algorithms are presented in Appendix A.  Resampling techniques are employed 

in classifier training for test error estimation and model selection.  The classifier 

performance is compared using the area under the curve (AUC) for the respective 

receiver operating characteristics (ROC) curves.  The best algorithm(s) are then selected 

for the respective goals.  The chapter culminates with step nine, using the knowledge, by 
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applying the best classification model as a decision support tool for AFCENT 

infrastructure MDI adjudication.   

Steps 6 – 8: Algorithm Selection, Data Mining, Interpretation and Evaluation 

This section combines steps six, seven, and eight of the KDD process, which 

encompass the data mining implementation.  Step six is algorithm selection and builds on 

step five, choosing the data mining task, by further investigating specific classification 

models.  Step seven entails the actual data mining implementation including training and 

tuning the respective models.  Step eight includes interpretation of the data mining results 

within the context of the KDD objectives.  The analysis and results are presented 

separately for the USAF and Navy data sets. 

First, the most suitable data mining algorithms must be identified.  Data mining 

algorithm selection is contingent upon the goals established early in the KDD process. 

The first KDD objective favors model interpretability while the second necessitates high 

classification performance.  These objectives can represent competing priorities in data 

mining algorithm selection.  For classification performance, higher flexibility tends to 

yield higher accuracy at the cost of interpretability.  Inference, however, is generally best 

implemented with relatively inflexible models that allow for increased interpretability.  

Given these objectives, this research pursues an algorithm that can fulfill both of the 

objectives.  This is heavily dependent upon the data, however, and the algorithm with the 

best prediction performance may not be the most interpretable model.  Therefore, 

numerous algorithms are pursued and the costs and benefits are compared in the context 

of the KDD goals.   
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Data mining algorithm selection is typically a function of the available data and 

the specified data mining task.  In this research, the data sets contain both numeric and 

categorical predictors and the first data mining task is prediction via classification.  There 

are many model types available for classification and tradeoffs abound.  Given the 

computational power available with standard computers, numerous data mining 

algorithms are employed in order to compare classifier performance.  All classifiers are 

employed with cross-validation and a range of tuning parameters in order to identify the 

best tuned models.  Furthermore, the area under the ROC curve is employed in 

comparing the models for data mining algorithm selection.  

USAF Data Set 

For the Fairchild data set, the feature selection process in step four yielded five 

feature subsets for investigation.  In order to select the most appropriate classification 

algorithm, each of the five feature subsets is evaluated against the potential algorithms.  

Additionally, a sixth iteration is included with all features from the Fairchild data set.  

The Fairchild data set is partitioned into a training and test set.  The training set is 

comprised of two-thirds of the data and the test set is comprised of one-third of the data.  

K-fold cross validation resampling is employed with each of the six feature subsets.  

Specifically, the training data is partitioned into five-folds for cross validation, repeated 

20 times, to estimate error on the test data set.  Five-folds are selected over ten-folds due 

to the limited number of observations in the training set.  For an initial comparison of 

classifier performance, the 95 percent confidence intervals for the area under the ROC 

curve (AUC) are plotted together.  The classifier comparison plots for each of the feature 

subsets are presented in Figure 15 through Figure 20. 
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Figure 15.  Fairchild Classifier Comparison:  Subset 1 ROC AUC Values 

 
Figure 16.  Fairchild Classifier Comparison:  Subset 2 ROC AUC Values 
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Figure 17.  Fairchild Classifier Comparison:  Subset 3 ROC AUC Values 

 
Figure 18.  Fairchild Classifier Comparison:  Subset 4 ROC AUC Values 
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Figure 19.  Fairchild Classifier Comparison:  Subset 5 ROC AUC Values 

 
Figure 20.  Fairchild Classifier Comparison:  All Features ROC AUC Values 
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Figure 15 through Figure 20 shows that decision tree classifiers outperform the 

other classifiers across all combinations of feature subsets.  The ROC AUC values 

suggest that the random forests algorithm is the best classification algorithm evaluated in 

this study.  Specifically, the random forest classifiers yield ROC AUC values of 0.8 or 

higher on eight out of the twelve comparisons.  ROC AUC values between 0.8 and 0.9 

are generally considered good classifiers and values between 0.9 and 1.0 are considered 

excellent.  The random forests algorithm employed with subsets three and five produce 

the highest ROC AUC values.  Alternatively, the parametric models never attain a ROC 

AUC value over 0.8.  Logistic regression paired with the features in subset three yields 

the best parametric model performance with a ROC AUC value between 0.7 and 0.8.  As 

such, logistic regression appears to provide the best platform for the inference objective.   

The ROC AUC values across the feature subsets also make evident the tradeoffs 

associated with the different feature combinations.  ROC AUC values are generally lower 

when fewer features are employed in model training.  Specifically, subsets one and two 

achieve ROC AUC values less than 0.70 across all classifiers.  ROC AUC values 

between 0.60 and 0.70 are generally considered to have poor classifier performance.  

Furthermore, all classifiers utilizing fewer than five features produce ROC AUC values 

below 0.80.  This suggests that modeling of the underlying phenomenon improves when 

more real property features are available and that the best features in the subset lack the 

information necessary to accurately classify mission critical infrastructure.   
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Inference 

The USAF MDI beta test data from Fairchild AFB presents an opportunity to 

learn about the relationships between real property data and mission critical infrastructure 

as identified by USAF stakeholders.  The small sample size does minimize the benefits 

associated with supervised learning; however, the inference pursuit may yield insight 

previously unknown.  Two specific inference questions for the MDI problem are as 

follows:  

1. What real property features contribute to classifying USAF 
mission critical infrastructure?   

2. What are the relationships between USAF real property features 
and mission critical infrastructure? 

The inference pursuit requires deliberate consideration in model selection.  

Parametric models, such as logistic regression, linear discriminant analysis and quadratic 

discriminant analysis, generally provide superior inference capability over more flexible 

models.  Specifically, parametric models afford direct insight into the contributions of 

specific features through the respective coefficient values.  In this study, logistic 

regression performed the best out of the parametric models as identified in the initial 

classifier comparison.  As such, logistic regression is selected for the inference objective.   

Given that there are many features in the USAF data set, specific techniques are 

available to further increase the inference capability of a logistic regression model.  For 

the inference objective, the “glmnet” package in R is employed to take advantage of the 

Least Absolute Shrinkage and Selection Operator (“lasso”) and regularization tuning 

parameters, alpha and lambda, in order to zero in on the important features (Hastie & 

Qian, 2014).  These methods utilize penalized maximum likelihood for linear models, 
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which effectively minimize the coefficient values for less significant features.  The ridge 

regression model is fit when the alpha tuning parameter is set to zero and the lasso model 

is fit when the alpha parameter is set to one (James et al., 2013).  In both cases, the 

lambda value serves as the tuning parameter.  The ridge regression method minimizes 

coefficient values for less important predictors while the lasso method shrinks less 

important predictor coefficients to zero.  For prediction accuracy, the choice between 

lasso and ridge regression comes down to the bias variance tradeoff and the 

characteristics of the data.  Ridge regression tends to have lower variance than the lasso 

method whereas the lasso method tends to experience higher bias (James et al., 2013).  

For inference, the lasso method increases the interpretability of a logistic regression 

model as the predictors that are not associated with the response shrink to exactly zero, 

which leaves a subset of important features.  The lasso method is employed with the 

Fairchild data to identify important real property features associated with mission critical 

infrastructure.  

The lasso model is employed using all 46 real property features with the 

categorical features decomposed into dummy variables for their respective factor levels.  

Five-fold cross validation is repeated 20 times in order to identify the best lambda value 

for the area under the ROC curve and to estimate test performance.  The logistic 

regression model ultimately provides the probability that a specific observation is 

“mission critical”.  The continuous features are all preprocessed to have a mean of zero 

and standard deviation of one.  The final lasso model retains 38 significant predictors.  

Each coefficient value equates to the respective change in the log odds for the respective 

feature, assuming all other feature values remain constant.  Generally, coefficient 
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estimates with a value of zero is indicative of no association, positive values indicate an 

increased likelihood of mission critical, and negative values indicate a decreased 

likelihood of mission critical.  Furthermore, taking the exponent of the coefficient value 

yields the odds ratio value for the feature, which equates to the odds change for a one-

unit change in the feature value.  The lasso model results indicate three general categories 

of real property data that are significant in distinguishing between mission critical and 

non-mission critical infrastructure.  The three categories include (1) infrastructure 

characteristics, (2) financial characteristics, and (3) organization codes.  These feature 

categories serve to shape the intuitions surrounding mission critical infrastructure at 

Fairchild AFB.  Table 14 presents the significant predictors with their respective 

coefficients and odds ratios.   
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Table 14.  Lasso Model Results for USAF Data Set 

Feature Name Coefficient Odds Ratio 
(Intercept)                  -1.1526 

 REPLACEMENT_ORG_CD1L         0.5701 1.77 
costShareTRUE               0.4152 1.51 
TOTAL_UOMLF          0.3536 1.42 
TOT_ACCUM_DEP_AMT           0.1692 1.18 
REPLACEMENT_FUND_CD3830      0.1649 1.18 
PLANT_REPLACEMENT_VALUE     0.1395 1.15 
FLOOR_BELOW_GROUND_QTY1        0.1293 1.14 
FLOOR_ABOVE_GROUND_QTY5    0.1232 1.13 
DEPTH_UOMIN                    0.0994 1.10 
BOOK_VALUE               0.0954 1.10 
CONSTRUCT_MATERIAL_CDOTHR      0.0948 1.10 
HISTORIC_STATUS_CDNREI         0.0906 1.09 
CURRENT_PERIOD_DEP_AMT         0.0849 1.09 
categoryGroup82            0.0495 1.05 
categoryGroup13               0.0449 1.05 
FLOOR_ABOVE_GROUND_QTY7        0.0444 1.05 
REPLACEMENT_ORG_CD54        0.0157 1.02 
utilizationpartial             0.0108 1.01 
ANNUAL_OPERATING_COST_ZERO1    0.0067 1.01 
REPLACEMENT_ORG_CD1Y           0.0047 1.00 
categoryGroup89             0.0039 1.00 
RESTORE_MOD_ORG_CD54     0.0016 1.00 
PREPONDERANT_USING_ORG_CD1Y  0.0009 1.00 
FINANCIAL_REPORTING_ORG_CD54   0.0001 1.00 
PREPONDERANT_USING_ORG_CD54   0.0000 1.00 
RESTORE_MOD_FUND_CD3840      0.0000 1.00 
categoryGroup21               0.0000 1.00 
categoryGroup42             -0.0008 1.00 
categoryGroup74             -0.0039 1.00 
categoryGroup75           -0.0042 1.00 
RESTORE_MOD_SUB_ACCT_CD5      -0.0050 0.99 
TOT_ACCUM_DEP_AMT_ZERO1       -0.0309 0.97 
CONSTRUCT_MATERIAL_CDBLCK   -0.0399 0.96 
REPLACEMENT_ORG_CD0J        -0.0628 0.94 
FLOOR_ABOVE_GROUND_QTY1      -0.0686 0.93 
categoryGroup85               -0.0865 0.92 
categoryGroup83           -0.1011 0.90 
facilityClass2               -0.1020 0.90 
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Using the results from the Fairchild AFB MDI beta test and assuming that all 

other covariates are equal, the following conclusions can be inferred about the predictors: 

• Organization Code “1L” is 1.77 times more likely than other 
organization codes to be mission critical. 

• When costs are shared among stakeholders, infrastructure is 1.51 times 
more likely to be mission critical than when costs are not shared. 

• Infrastructure measured in LF is 1.42 times more likely to be mission 
critical. 

• Infrastructure with funding code 3830 is 1.18 times more likely to be 
mission critical 

• The likelihood of mission critical increases as the PRV value 
increases. 

• Facilities with a single floor below ground are 1.14 times more likely 
to be mission critical than those that do not have a floor below ground.   

• Facilities with five floors above ground are 1.13 times more likely to 
be mission critical than those that do not have five floors. 

• The likelihood of mission critical increases as book value increases.   
• Infrastructure with construction material code “other” is 1.10 times 

more likely to be mission critical than other material codes.   
• Infrastructure with historic status code “NREI” is 1.09 times more 

likely to be mission critical than non “NREI” infrastructure.   
• Category group 82 (heat and refrigeration), is 1.05 times more likely to 

be mission critical than those that are not category group 82. 
• Category group 13 (Comm, Navigation Aids, Airfield Light) is 1.05 

times more likely to be mission critical than infrastructure that is not in 
category group 13. 

• Facilities with seven floors above ground are 1.05 times more likely to 
be mission critical than those that do not have seven floors above 
ground. 

• Infrastructure with construction material code “BLCK” (concrete 
block) is 0.96 times as likely as non-concrete block infrastructure to be 
mission critical. 

• Organization code “0J” is 0.94 times as likely to be mission critical 
compared to non-“0J” organization code infrastructure.  

• Facilities with one floor above ground are 0.93 times as likely to be 
mission critical compared to infrastructure that is not a single floor 
above ground. 

• Infrastructure in category group 85 (roads and other pavements) is 
0.92 times as likely to be mission critical as non-roads and pavements.   

• Infrastructure in category group 83 (sewage and waste) is 0.90 times 
as likely to be mission critical as non-sewage and waste infrastructure.   

• Infrastructure in facility class 2 ( maintenance and production) is 0.90 
times as likely to be mission critical as compared to non-facility class 
2 infrastructure. 
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Prediction 

There are two noteworthy concerns with using the USAF MDI beta test data for a 

prediction model.  First, the data set is very small at just over 300 observations.  This 

limited sample size inhibits the viability of training a prediction model.  Second, the 

target data set comes from just one USAF installation.  As such, the data set cannot be 

considered representative of the entire USAF infrastructure population and so, the 

generalizability of a trained classifier is limited.  An argument could be made for 

employing this data in a prediction model for similar installations with similar mission 

sets.  Because of these limitations, the USAF data set is restricted to the inference 

objective.  The Navy data set, however, contains ample observations for both the 

inference and prediction goals.  

Navy Data Set 

Due to the limited number of features available for the Navy data set, no feature 

selection is employed and all features are employed in model training.  Again, all 

potential classifiers are evaluated by comparing the respective ROC values.  Eighty 

percent of the Navy data is utilized for training and 20 percent of the data is set aside for 

testing.  Ten-fold cross validation resampling is employed with the training data.  Figure 

21 displays the 95 percent confidence intervals for each classifier’s ROC values. 



83 

 
Figure 21.  Navy Classifier Comparison: ROC AUC Values 

Similar to the Fairchild data set, the decision tree models dominate the other 

classifiers.  Specifically, the random forests classifier achieves the highest ROC AUC 

values, although the classification tree ensemble models all yield ROC AUC values 

above 0.8.  Logistic regression leads the parametric models with a ROC AUC value 

between 0.7 and 0.8.  Given these performance results, the random forests classifier is 

initially selected for the highest prediction accuracy and logistic regression is selected as 

the optimum model for inference.    
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Inference 

The inference objective seeks to identify important predictors and relationships 

between the predictors and the response.  Two specific inference questions for the Navy 

data set are as follows:  

1. What real property features contribute to classifying mission 
critical infrastructure?   

2. What are the relationships between category groups and mission 
critical infrastructure? 

As with the Fairchild data, the lasso method is employed with logistic regression 

to increase interpretability.  The lasso model is trained with all of the features in the Navy 

data set: unit of measurement, measurement value, PRV, facility class, and category 

group.  The numeric features are standardized to have mean equal to zero and standard 

deviation of one.  The categorical variables are decomposed into their respective factor 

levels.  Ten-fold cross validation is utilized to select the optimum lambda with ROC as 

the performance metric.  The highest ROC value attained is 0.75 at a lambda value of 

0.002.  A comparison of the training and test performance suggests that the model is not 

overfitting as the training and test errors are similar.  The model output is the probability 

that a given observation is mission critical based on the features and coefficient values.  

The lasso model yields very low sensitivity levels and high specificity levels.  This means 

that the classifier is primarily predicting non-mission critical (the majority class) except 

for a small fraction of the observations.   

The lasso model retains 56 real property features as significant with respect to 

classifying mission critical infrastructure.  The results indicate that three general 

categories of real property data that are significant in distinguishing between mission 
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critical and non-mission critical infrastructure.  Each coefficient value equates to the 

respective change in the log odds for the respective feature, assuming all other feature 

values remain constant.  Generally, coefficient estimates with a value of zero are 

indicative of no association, positive values indicate an increased likelihood of mission 

critical, and negative values indicate a decreased likelihood of mission critical.  

Furthermore, taking the exponent of the coefficient value yields the odds ratio value for 

the feature, which equates to the odds change for a one-unit change in the feature value.  

The 56 significant Navy real property predictors identified in the lasso model are 

presented Table 15. 
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Table 15.  Lasso Model Results for Navy Data Set 

Feature Name Coefficient Odds Ratio 
(Intercept)      -2.4099 

 categoryGroup13   0.2928 1.34 
UMKV              0.2234 1.25 
PRV            0.2109 1.23 
categoryGroup89  0.1989 1.22 
MEASUREMENT       0.1773 1.19 
UMLF             0.1572 1.17 
facilityClass3    0.1538 1.17 
categoryGroup42   0.1442 1.16 
UMSY          0.1279 1.14 
categoryGroup15   0.1219 1.13 
categoryGroup73   0.0882 1.09 
categoryGroup84 0.0771 1.08 
categoryGroup81   0.0641 1.07 
categoryGroup14   0.0408 1.04 
UMKG             0.0331 1.03 
UMOL             0.0324 1.03 
categoryGroup21   0.0320 1.03 
categoryGroup39 0.0290 1.03 
categoryGroup16   0.0277 1.03 
UMGA              0.0218 1.02 
categoryGroup86   0.0190 1.02 
categoryGroup32   0.0132 1.01 
UMTR              0.0077 1.01 
categoryGroup43   0.0067 1.01 
UMMB              0.0065 1.01 
categoryGroup12  -0.0094 0.99 
categoryGroup55  -0.0102 0.99 
UMBL           -0.0115 0.99 
categoryGroup82 -0.0119 0.99 
UMKW             -0.0195 0.98 
categoryGroup83  -0.0204 0.98 
categoryGroup51 -0.0207 0.98 
categoryGroup54  -0.0235 0.98 
UMFB             -0.0298 0.97 
facilityClass5   -0.0335 0.97 
categoryGroup87  -0.0398 0.96 
categoryGroup41  -0.0423 0.96 
UMMI             -0.0465 0.95 
categoryGroup74  -0.0517 0.95 
UMGM          -0.0568 0.94 
categoryGroup45  -0.0621 0.94 
categoryGroup71  -0.0624 0.94 
facilityClass6   -0.0773 0.93 
categoryGroup76  -0.0876 0.92 
UMMG             -0.0947 0.91 
categoryGroup22  -0.1320 0.88 
UMEA             -0.1601 0.85 
categoryGroup44  -0.1799 0.84 
categoryGroup85 -0.2795 0.76 
categoryGroup69  -0.4837 0.62 
categoryGroup75  -0.5074 0.60 
facilityClass7  -0.5642 0.57 
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To further investigate the infrastructure functions designated by the category 

group codes, the lasso model is trained again using only the category group feature.  This 

allows for an apples-to-apples comparison of the likelihood that a given category group is 

classified as mission critical.  Given the estimated coefficient values, the odds ratio is 

calculated by taking the exponent of the coefficient.  An odds ratio greater than one 

indicates a greater likelihood of mission critical and an odds ratio less than one indicates 

a decreased likelihood of mission critical.  The results and interpretation of the lasso 

model with the category group feature are presented in Table 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



88 

Table 16.  Lasso Model Results for Navy Data Set Category Group Feature 

Category 
Group Description Coefficient Odds 

Ratio Interpretation 

(Intercept)  -1.8398 
 

 
51 Medical Centers & Support Facilities 1.0763 2.93 

As Odds Ratio 
Increases, 

Likelihood of 
Mission Critical 

Increases 

15 Waterfront Operational Facilities 1.0444 2.84 
13 Comm, Navigation Aids, Airfield Light 0.9924 2.70 
81 Electrical Power 0.6859 1.99 
31 RDT&E Buildings 0.5361 1.71 
89 Miscellaneous Utilities 0.4421 1.56 
84 Water 0.4044 1.50 
39 RDT&E Facilities Other Than Buildings 0.2955 1.34 
43 Cold Storage 0.2434 1.28 
42 Ammunition Storage 0.2202 1.25 
16 Harbor & Coastal Operational Facilities 0.1411 1.15 
82 Heat and Refrigeration 0.0626 1.06 

     

21 Maintenance Facilities -0.0173 0.98 

As Odds Ratio 
Decreases, 

Likelihood of 
Mission Critical 

Decreases 

87 Ground Improvement Structures -0.0648 0.94 
12 Liquid Fueling and Dispensing Facilities -0.0875 0.92 
37 RDT&E Range Facilities -0.0988 0.91 
14 Land Operational Facilities -0.1744 0.84 
17 Training Facilities -0.2076 0.81 
83 Sewage and Waste -0.2313 0.79 
61 Administrative Buildings -0.4435 0.64 
41 Liquid Storage; Fuel & Non-propellants -0.4993 0.61 
55 Dispensaries and Clinics -0.5827 0.56 
62 Underground Administrative Structures -0.6511 0.52 
53 Medical and Medical Support Facilities -0.6743 0.51 
85 Roads and Other Pavements -0.8610 0.42 
45 Open Storage -0.9212 0.40 
44 Covered Storage -1.2032 0.30 
73 Personnel Support & Services Facilities -1.2588 0.28 
72 Unaccompanied Personnel Housing -1.6092 0.20 
22 Production Facilities -1.8958 0.15 
54 Dental Clinics -1.9512 0.14 
74 Indoor MWR Facilities -1.9705 0.14 
71 Family Housing -2.2637 0.10 
76 Museums & Memorials -3.1229 0.04 
69 Admin Structures Other Than Buildings -4.2931 0.01 
75 Outdoor MWR Facilities -4.3067 0.01 
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The category group rankings appear to be consistent with intuitions about mission 

critical infrastructure.  Two of the common themes associated with the highest ranked 

infrastructure functions include direct ties operational missions (e.g. navigational aids) 

and uniqueness.  For example, ammunition storage facilities have very specific 

requirements and it would be unadvisable to store ammunition in a facility not intended 

for ammunition.  This supports the intuition that redundancy, or a lack thereof, plays a 

role in mission critical infrastructure.   

Alternatively, for category groups with a negative coefficient, there are typically 

alternatives or workarounds available and delays or inaccessibility will most likely have 

little negative impact on mission execution.  For example, administration structures tend 

to be fairly generic and redundant capability is likely available, if required.  Additionally, 

morale, welfare, and recreational (MWR) facilities are not required for mission 

execution.  The category group lasso model results provide a notional hierarchy for 

generic function codes.  This general interpretation of the Navy real property inventory 

functions and their respective likelihood of being mission critical aids in shaping the 

intuitions surrounding mission criticality and built infrastructure.  

Prediction 

For the prediction goal, the random forests classifier outperforms the other 

classification tree models by a small margin.  The random forests algorithm is similar to 

bagging with the exception that a random subset of features is employed in the learning 

process.  As such, the unique tuning parameter of interest for random forests is the total 

number of features used in the random feature selection known as “mtry”.  In order to 

select the best tuning parameter, cross validation is employed with classifiers trained at 
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all possible tuning parameter values.  Figure 22 presents the results of the random forests 

“mtry” tuning iterations for the Navy training data.   

 

Figure 22.  Navy Random Forests Classifier Tuning Parameter 

The tuning parameter plot reveals that there is a sharp increase in the ROC value 

up to 32 randomly selected predictors, after which the performance improves only 

slightly as the number of features increases to the maximum of 65.  Using the total 

number of predictors is essentially the bagging classification method because there is no 

random feature subset.  Given that the classification tree models performed similarly 

well, it is prudent to further analyze their performance by comparing their respective 

sensitivity and specificity results.  Figure 23 displays the ROC values, sensitivity, and 

specificity for the respective tree models.   
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Figure 23.  Navy Decision Tree Comparison 

The decision tree comparison reveals that each model yields low sensitivity and 

high specificity.  This means that the model is very good at identifying non-mission 

critical infrastructure and not good at identifying mission-critical infrastructure.  The 

class imbalance may be causing the bias towards the majority class, non-mission critical.  

Despite having decent ROC values, the classifier performance for the Navy training data 

is unacceptable for use as a decision support tool.  The next step is to pursue a means of 

increasing the model sensitivity.    
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The C5.0 classification tree algorithm enables the use of a “cost matrix”, which 

penalizes classification mistakes.  The cost matrix specifies the penalization costs for 

both false positive and false negative prediction errors.  Initially, the C5.0 model is 

implemented using 10-fold cross validation with cost values between one and ten as 

tuning parameter levels.  The five features employed in model training are PRV, 

measurement, unit of measure, facility class, and category group with each factor variable 

decomposed into dummy variables.  The tuning parameter comparison indicates that a 

cost value of five yields the best compromise between model accuracy, sensitivity, and 

specificity.  The cost matrix employed with the C5.0 algorithm is displayed in Table 17. 

Table 17.  Cost Matrix for C5.0 Algorithm 

 Predicted Class 
True Class Mission Critical Non-Mission Critical 

Mission Critical 0 1 
Non-Mission Critical 5 0 

 

 The C5.0 algorithm with the cost matrix yields an overall training set accuracy of 0.80, 

sensitivity of 0.79, and specificity of 0.81 on the Navy training data.  Next, the training 

and test set results are compared to determine if the model is overfitting on unseen 

examples.  The training set and test set results are displayed in Figure 24 and Figure 25, 

respectively. 
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Figure 24.  Training Set Results for Navy C5.0 Classifier with Cost Matrix 

 

Figure 25.  Test Set Results for Navy C5.0 Classifier with Cost Matrix 
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As expected, the training set accuracy is higher than the test set accuracy but only 

by a margin of about two percent.  The sensitivity experiences a larger decrease in 

performance dropping from a 0.79 true positive rate on the training data to 0.71 on the 

test data.  The specificity decreases 0.81 on the training data to 0.79 on the test set.  The 

decrease in accuracy between the training and test data is not indicative of significant 

overfitting. 

Finally, limited inference capability is provided with the C5.0 decision tree 

classifier.  The caret package in R enables variable importance estimates with the 

“varImp()” function.  For C5.0 decision trees, the variable importance function calculates 

the percentage of the training samples in the terminal nodes after the split (inside-R.org, 

2016).  For example, the predictor used for the first split affects the rest of the splits and, 

therefore, has a feature importance of 100 percent.  The C5.0 classifier employs the 

facility class, category group, PRV, measurement, and unit of measure features.  The 

feature importance function is limited, however, in that it does not provide insight into 

the underlying decisions made.  For this reason, less flexible models like logistic 

regression are favored for inference.  Figure 26 presents the top 20 features employed in 

C5.0 classifier.   



95 

 

Figure 26.  Variable Importance:  C5.0 Classifier with Cost Matrix 

The primary features employed by the C5.0 decision tree algorithm reveal that 

physical characteristics, monetary value, and general facility use categories are 

instrumental in distinguishing between non-mission critical and mission critical 

infrastructure.  The Navy real property features available do appear to have limitations 

with predictive accuracy, however.  With additional real property features, the prediction 

accuracy may improve.   
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Step 9:  Using Discovered Knowledge 

The final step of the KDD process is to employ the discovered knowledge.  The 

KDD goals in this research are to develop a prediction model for classifying mission 

critical infrastructure and identify relationships between real property features and the 

mission dependency index metric.  The prediction model is intended for use as a decision 

support tool in the USAF MDI adjudication process.  By training the prediction model on 

real property assets with MDI labels determined via stakeholder input, the model 

provides a more user-oriented prediction as compared to the interim USAF MDI 

assignment via CATCODE. 

AFCENT provided real property data for the three primary air bases in Southwest 

Asia:  Ali Al Salem Air Base, Kuwait; Al Dhafra Air Base, United Arab Emirates; and Al 

Udeid Air Base, Qatar.  The original real property data contained 2,037 observations with 

15 features.  The AFCENT RP data provided contained the features listed in Table 18. 

Table 18.  AFCENT Real Property Data Features 

Feature Name Data Type 
FACILITY NUMBER Integer 
INTEREST CODE Integer, Text 
FACILITY TYPE Text 
TYPE CONSTRUCTION Text 
CATEGORY CODE Integer 
LOCAL DESIGNATION Text 
RPA DESCRIPTION Text 
UNIT OF MEASURE QUANTITY Integer 
RPA UNIT OF MEASURE CODE Text 
MDI Integer 
COST BASIS Integer 
PLANT REPLACEMENT VALUE Integer 
CREATE DT YEAR Year 
MAJCOM CLAIMANT Integer, Text 
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The C5.0 cost matrix prediction model trained with the Navy real property data 

yielded the best classification results and is employed in predicting AFCENT mission 

critical infrastructure.  Prior to using the model for predictions on the AFCENT 

infrastructure, the AFCENT real property data is preprocessed to align with the real 

property data set utilized to train the classifier.  Next, the model is employed in 

classifying AFCENT infrastructure as either mission critical or non-mission critical.  The 

classifier predictions are then compared with the original USAF mission critical labels to 

identify specific facilities that do not align.  This comparison provides AFCENT 

personnel with a subset of facilities to investigate for possible MDI adjudication.  The 

classifier results for each installation are presented in Table 19. 

Table 19.  Classifier Results for AFCENT Installations 

 
Number of 
Facilities 
Identified 

Increased 
to MC 

Decreased 
to non-MC 

Ali Al Salem Air Base 66 57 9 
Al Dhafra Air Base 45 31 14 
Al Udeid Air Base 236 228 8 

Totals: 347 316 31 
 

The facility classes and category groups are of particular interest with respect to the 

classifier predictions.  Subsetting the mission critical prediction discrepancies by function 

codes allows for a better understanding the primary disconnects between the Navy MDI 

assignment process and the USAF MDI assignment process.  The Navy and USAF 

discrepancy frequencies by facility class (one-digit function codes) and category group 

(two-digit function codes) are presented in Figure 27 and Figure 28, respectively. 
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Figure 27.  Facility Class Frequencies for Mission Critical Predictions 

 

Figure 28.  Category Group Frequencies for Mission Critical Predictions 
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The facility classes with the most discrepancies are one, four, and eight.  Facility 

class one is operations and training, facility class four is supply, and facility class eight is 

utility and ground improvements.  Furthermore, the frequencies indicate that the category 

groups with the most discrepancies are 13, 42, and 81.  Category group 13 encompasses 

communication, navigation aids, and airfield lighting; category group 42 is ammunition 

storage; and category group 81 is electrical power infrastructure.  The infrastructure in 

these specific facility classes and category groups enable mission execution and indicate 

general infrastructure functions that should be investigated further for MDI adjudication.    

Chapter Summary 

In conclusion, the decision tree models yielded the best prediction results for 

classifying mission critical infrastructure.  The final classifier yields an accuracy of 77.9 

percent on the test data sensitivity and specificity values of 71.6 and 78.8, respectively.  

This model is utilized to predict mission critical facilities for three AFCENT installations.  

In this capacity, the classifier provides a decision support tool for identifying potential 

MDI discrepancies for further investigation.  The classifier identified 347 AFCENT 

infrastructure assets as possible MDI discrepancies.  These results enable AFCENT 

engineers to narrow in on specific facilities for possible MDI adjudication.  Furthermore, 

supervised learning methods provide insight into real property features through 

inferential analysis.  Logistic regression is employed with the lasso method to identify 

important real property features and supplement intuitions associated with mission 

critical infrastructure.   
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V.  Conclusions and Recommendations 

Chapter Overview 

The KDD process provides a unique framework for better understanding the 

mission dependency index problem.  Real property data in the federal government is 

abundant due to recent changes in infrastructure asset management.  In many ways, the 

plethora of real property data represents a dormant resource.  This research scratches the 

surface of the possibilities that machine learning techniques provide with respect to 

mining real property databases for useful knowledge about government real property 

portfolios.  This chapter answers the investigative questions and summarizes the 

conclusions and recommendations from the knowledge discovery process.   

Investigative Questions Answered 

1. How can machine learning techniques, specifically supervised learning, 
be applied to predict mission critical USAF facilities? 

The research indicates that non-parametric learning algorithms yielded the best 

classification performance.  Specifically, classification trees are best suited for real 

property data, which consists of both numeric and categorical features.  Logistic 

regression yielded the best platform for model interpretability and inference, however, 

the prediction accuracy is sub-optimal with very low sensitivity levels.  Similarly, despite 

achieving a good ROC value, the random forests algorithm does not provide adequate 

sensitivity to employ as a decision support tool for the MDI adjudication process.  The 

C5.0 algorithm employed with a corresponding cost matrix provided the best platform for 

reasonable sensitivity and specificity levels.  Overall, supervised learning techniques 
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offer a myriad of tools to gain knowledge from real property features.  Specifically, the 

real property data features in the research provided limited predictive capability for 

identifying mission critical infrastructure (MDI greater than or equal to 85). 

2. What features should be collected for such an algorithm? 

Existing real property data, while extensive, provides limited prediction capability 

for discriminating between mission critical and non-mission critical infrastructure.  

Algorithm selection relies heavily on the available data.  For example, LDA and QDA are 

employed with numeric data, while logistic regression and classification trees can utilize 

both numeric and categorical data.  The data features employed in the final classification 

model included generic function codes (facility class and category groups), plant 

replacement value, measurement type, and measurement value.  These features provided 

enough information about the infrastructure to yield a 75 percent balanced accuracy 

between the true positives and true negatives on the test data set.  More specific four-digit 

function codes (FACs) were not employed in the final model due to the significantly 

increased computational costs and observed overfitting to the training data.   

In pursuit of the inference objective, logistic regression with the lasso method 

identified six feature categories within the USAF real property data that proved 

significant for the given classification task.  The six categories include (1) infrastructure 

characteristics, (2) financial characteristics, (3) organization codes, (4) regulatory codes, 

(5) historic status, and (6) infrastructure function.  The data features within these six 

categories ultimately suggest that the themes surrounding mission critical infrastructure 

include uniqueness of the physical infrastructure, organizational ties, age, and 

infrastructure function.   
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Given that the best classification model resulted in sensitivity and specificity 

levels between 0.70 and 0.80 on the test data, real property data appears to be limited in 

discriminating between mission critical and non-mission critical infrastructure.  This 

suggests that data collected via the MDI survey process captures information about 

infrastructure-mission relationships that do not exist in real property data.  This research 

identifies that additional data is necessary to classify mission critical infrastructure with 

high accuracy.   

Proposed data features that would contribute to classifying mission critical 

infrastructure include (1) the occupying organization’s relationship to specific mission(s), 

(2) maximum infrastructure down time without mission degradation, and (3) the number 

of co-located redundant infrastructure assets.  The occupying organization plays a major 

role in determining mission criticality.  There is a natural hierarchy with respect to 

mission execution.  This is sometimes captured via CATCODEs for infrastructure like 

airfield pavements, however, many CATCODEs do not specifically identify the occupant 

and their relationship to the mission.  A common functional or organizational hierarchy 

framework for facility occupants could be useful as an additional predictor.  Second, 

infrastructure is in place to serve a specific function.  Levels of service for infrastructure 

differs by the specific support provided and the specific mission(s) supported.  Also, 

infrastructure downtime measured in units of time provides an easily understood metric 

for data collection.  This metric alone could serve as a strong discriminator for mission 

critical infrastructure.  Third, redundancy is a key element of mission criticality.  High 

value assets with no redundant capability present a higher risk than an asset with multiple 

back-up options.  A data feature that captures the number of legitimate redundant 
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infrastructure assets could serve as a strong discriminator when coupled with 

infrastructure function.  For example, an air traffic control tower with no co-located 

redundant capability is indicative of high mission criticality for a flying mission.   

3. What is the appropriate architecture for such an algorithm? 

Out of the classification algorithms evaluated, multiple decision tree classifiers 

produced the highest ROC values.  Specifically, the C5.0 decision tree algorithm with a 

cost matrix yields the most suitable compromise between prediction accuracy, sensitivity, 

and specificity for an MDI adjudication decision support tool.  Alternatively, logistic 

regression provides the best classifier for interpretably and inference but suffers from low 

sensitivity levels. 

4. What are the costs and benefits associated with employing machine 
learning in Air Force asset management facility prioritization? 

There are two primary potential benefits associated with using machine learning 

for Air Force asset management prioritization.  First, machine learning provides a means 

of automating tedious tasks.  Given adequate labeled observations and relevant data 

features, supervised learning techniques provide the opportunity to automate record 

reviews such as the MDI adjudication process.  The MDI adjudication process currently 

requires manual record reviews and inter-agency coordination.  Second, machine learning 

could be beneficial in minimizing data collection required for specific tasks.  By 

collecting data from a subset of a given population, a machine learning model could be 

employed for prediction with the rest of the population.  For example, data collection for 

MDI data could be minimized to a subset of installations within each MAJCOM in order 
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to build predictive models for facility prioritization.   This application would minimize 

the resources and costs associated with enterprise-wide data collection.    

While machine learning offers powerful tools for data analysis, there are five 

primary costs associated with employing machine learning techniques for facility 

prioritization.  These costs include the requirement for labeled data, models versus 

subject matter expert judgment, analytical expertise, concerns with “black box” models, 

and computational resources.  First, labeled data is a prerequisite for supervised learning 

and requires deliberate investment.  USAF real property data represents facts about 

infrastructure at a very basic level.  Real property data is typically collected immediately 

upon commissioning of a given facility and is reviewed and updated annually.  This 

research reveals that real property data is insufficient for training strong classifiers for 

mission critical infrastructure.   

Second, machine learning techniques should not be employed in place of subject 

matter expert judgment for complex decision-making tasks such as facility prioritization.  

Mission dependency index is essentially an attempt to capture tacit knowledge from 

experts.  Enterprise-wide application of the MDI should rely on a solid foundation of data 

collection with deliberate metrics aimed at capturing tacit knowledge from USAF 

personnel who are intimately familiar with the facilities that support mission execution.   

The third cost associated with machine learning techniques is analytical expertise 

and time for analysis.  Machine learning combines technical aspects from numerous 

fields including statistics and computer science.  As such, machine learning techniques 

require a certain amount of expertise and experience to employ effectively.  Generally 

speaking, the skills required to execute machine learning techniques are not common in 
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the USAF civil engineer career field.  As USAF asset management evolves and data 

quality improves, opportunities for machine learning applications will increase.  

Emphasis should be placed on employing the right people with the knowledge, skills, and 

abilities to discover knowledge from databases.   Furthermore, time is a commodity in all 

USAF functional areas and attempting to employ machine learning through side projects 

or as an additional duty is suboptimal.  The iterative nature of the KDD process 

necessitates dedicated personnel with time to focus on analysis.  The KDD process 

establishes domain knowledge as a prerequisite for data mining.  USAF civil engineering 

personnel have the domain knowledge required for asset management problems.  It is 

time to start investing in the right people and skills to supplement civil engineer domain 

knowledge and discover knowledge from data.      

  The fourth cost associated with machine learning techniques is the potential 

danger of applying “black-box” techniques to complex problems.  A “black-box” is a 

model that offers limited explanation of the model inter-workings and the general 

transition from input to output.  Using “black-box” methods can lead to deceptive models 

and can severely limit credibility with decision makers.  Furthermore, “black-box” 

models do not necessarily contribute to understanding the underlying phenomenon, 

which limits the usefulness of the knowledge discovery process.   

Finally, employing machine learning techniques requires dedicated time and 

computational resources, including hardware and software.  While computing power is 

ever-increasing, complex models require significant processing.  Adequate investment in 

capable hardware and software is a necessary precursor to dedicated data analysis.  This 
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could pose a limitation in applying machine learning techniques within the civil engineer 

career field.   

5. How can the Knowledge Discovery in Databases (KDD) process be 
applied to facilitate MDI reviews for AFCENT facilities? 

This research employed the KDD process as a means of automating the MDI 

review and adjudication process.  The KDD process emphasizes a solid understanding of 

the problem and domain.  Data collection and preparation are conducted within the 

context of the MDI and military infrastructure prioritization problem.  Algorithm 

selection and implementation are based on the identification of mission critical 

infrastructure with an MDI value of 85 or higher.  The final classification model is 

utilized to identify likely AFCENT mission critical infrastructure in order to minimize the 

requirement for manual MDI reviews.  Ultimately the results of this KDD application 

provide a means of decreasing the personnel and time requirements for AFCENT MDI 

adjudication.  

Conclusions of Research 

In conclusion, the KDD process provided a solid framework for the USAF civil 

engineering-specific MDI problem using real property data from the United States Navy.  

This is just one example of how machine learning techniques can be applied to automate 

tedious tasks and provide relevant and objective tools for domain-specific problems.  The 

results provided enhanced intuitions about mission critical infrastructure in the context of 

real property.  Furthermore, the classification model provides AFCENT civil engineers 

with a tool to minimize personnel-hours associated with manual MDI reviews by 

identifying a subset of facilities for further investigation.  
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Significance of Research 

Infrastructure asset management is built on a foundation of data including 

physical characteristics, condition, and function.  This data is contained in databases that 

represent dormant resources in the absence of the analytical expertise required for 

knowledge discovery.  The future of asset management lies in high quality data and 

analytical techniques to better forecast mission requirements, life cycle costs, and 

resource allocation decisions.  The USAF civil engineer career field should embrace 

machine learning and commit to training, organizing, and equipping personnel to employ 

these techniques and enhance asset management practices. 

Recommendations for Action 

One recommendation for consideration by USAF civil engineer leadership is a 

“Civil Engineering Data Analysis Center of Excellence”.  Data analysis requires a certain 

level of analytical expertise and training.  By investing in personnel with data mining and 

data science expertise, thorough and objective analysis will improve enterprise-wide 

decision-making.  Additionally, appropriate investment in computational resources is 

necessary to execute complex data analysis in a timely fashion.  Predictive analytics is 

commonplace in industry and the USAF should not neglect the powerful tools machine 

learning has to offer.   
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Recommendations for Future Research 

This research emphasizes existing limitations associated with the USAF mission 

dependency index.  Mission dependency is a function of infrastructure purpose and the 

relationship with specific mission objectives.  Currently, MDI is determined solely by 

CATCODE, a generic infrastructure function identifier.  The missing piece of the USAF 

mission dependency index is the linkage with specific mission objectives.  The USAF 

missions are clearly identified in the 2023 implementation plan, however, the connection 

between these missions and the infrastructure required for mission execution remains 

uncertain.  Future MDI research should focus on two primary lines of efforts, mapping 

specific infrastructure assets to specific missions using measureable data features and 

developing a reliable and repeatable process for stakeholder data collection. 

The first line of effort should focus on developing metrics to capture facts about 

the consequence of failure associated with specific USAF infrastructure.  This research 

reveals that real property data has limited capability for predicting mission critical 

infrastructure.  Existing real property data does not capture the linkage between 

infrastructure assets and the missions they support or to what degree they contribute to 

mission execution.  Essentially, interdependencies and intradependencies are not taken 

into account with USAF MDI values.  Generic infrastructure functions identified by 

CATCODES do not provide the level of granularity necessary to compare infrastructure 

assets.  Data should be collected from the field in order to truly identify mission critical 

infrastructure with any degree of certainty.  In the context of mission dependency, 

infrastructure can be viewed as a “network” of nodes with varying degrees of connection 

to and impact on executing the specific USAF mission priorities listed in the 2023 
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implementation plan.  Future research should include developing specific data features 

that (1) link specific infrastructure to specific missions, (2) capture infrastructure 

redundancies at the base, MAJCOM, and USAF levels, and (3) capture time-based 

metrics for allowable infrastructure downtime.   

The second line of effort should focus on developing a reliable and repeatable 

data collection process for mission dependency data elements.  Data collection options 

abound with web-based survey and data collection tools.  The USAF MDI methodology 

suffers from a lack of data collection.  The mission dependency problem transcends real 

property data and requires a more holistic solution than assignment by CATCODE.  We 

cannot use data features of the past to solve existing and future problems.  Infrastructure 

asset management requires deliberate data collection for effective decision-making.  Data 

collection for MDI should not have to cost millions of dollars per year.  Further research 

into web-based streamlined data collection is necessary to improve upon the existing 

MDI metric and resource allocation framework. 

Summary 

This research shows that machine learning is a strong contender for solving asset 

management specific problems.  As infrastructure data relevance and quality improves, 

knowledge of machine learning techniques can provide domain experts with options for 

gleaning knowledge from databases.  Furthermore, data science and machine learning 

should be incorporated into the USAF asset management framework in order to guide the 

future of asset management and establish best practices in managing a vast real property 

portfolio.   
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Appendix A.  Data Mining Algorithms 

Logistic Regression 

Logistic regression is very popular model for binary classification problems.  

Logistic regression is a linear model that predicts the probability that a given observation 

belongs to a specific class.  Given the probabilities associated with the observations, a 

threshold for the probabilities is selected to classify each observation. As the logistic 

regression outputs a probability, the range of values will always fall between 0 and 1.   

The logistic function is presented in Equation 2 (James et al., 2013). 

 
 ( 2 ) 

The logistic function requires a different interpretation from the standard linear 

regression equation.  With some manipulation, the logistic function takes on the form 

known as the odds.  The odds is the probability of belonging to the specified class 

divided by the probability of not belonging to the specified class.  The odds ratio is 

presented in the left hand side of Equation 3 (James et al., 2013). 

  ( 3 ) 

Another important concept in logistic regression is the log-odds or logit, which 

amounts to a further manipulation of the odds presented previously.  The log-odds is 

presented in the left hand side of Equation 4 (James et al., 2013). 

 
 ( 4 )  
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Ultimately, the beta values (β) are determined based on the training data and the 

maximum likelihood method.  The maximum likelihood method seeks to estimate the 

beta values that will produce a value close to zero for training observations that do not 

belong to the class and a value close to one for training observations that do fall in the 

class.  The beta values are chosen to maximize the likelihood equation presented in 

Equation 5 (James et al., 2013). 

  ( 5 ) 

Once the beta weights are determined via the maximum likelihood, the model can 

be used for prediction on unseen observations by simply inserting the attribute values into 

the logistic function.   

Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is another a widely used classification model 

and, like logistic regression, provides a probability for each observation.  LDA models 

the distribution of each predictor separately against the response classes (James et al., 

2013).  LDA employs Bayes’ theorem to produce estimates for the class probability given 

the value of X, or Pr(Y=k|X=x).  LDA makes specific assumptions about the data.  “The 

LDA classifier results from assuming that the observations within each class come from a 

normal distribution with a class-specific mean vector and a common variance σ2, and 

plugging estimates for these parameters into the Bayes classifier” (James et al., 2013).  

Understanding the model assumptions is necessary for comparing LDA with other 

classifiers.  For example, James et al. (2013) describe that LDA can perform better than 

logistic regression when the Gaussian distribution assumption holds.   
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Quadratic Discriminant Analysis 

Quadratic discriminant analysis (QDA) shares the same assumptions made in 

LDA except that QDA assumes that each class has a distinct covariance matrix (James et 

al., 2013).  Furthermore, QDA assumes a quadratic decision boundary whereas LDA 

assumes a linear decision boundary.  This quadratic decision boundary means that QDA 

is more flexible than LDA and “can accurately model a wider range of problems than can 

the linear methods” (James et al., 2013).    

 
K-nearest Neighbors 

The K-nearest Neighbors (KNN) classification method operates in a completely 

different manner than logistic regression, LDA, and QDA.  Specifically, KNN uses 

measures of distance between observations for classification.  In KNN, the “K” term 

represents the number of neighbors selected for classification.  For example, if K is set 

equal to three, the algorithm will identify the three observations closest to a given 

observation using a specified distance measurement.  Two common distance 

measurements are Euclidian distance and Manhattan distance.  Euclidian distance is the 

most direct distance between two points and Manhattan distance is measured at right 

angles along specified axes.  Once K is selected, the algorithm assigns the observations to 

the majority class among their respective neighbors.  KNN is a completely non-

parametric approach meaning that no assumptions are made about the decision boundary 

(James et al., 2013).  As such, KNN is much more flexible than logistic regression, LDA, 

and QDA.  There are tradeoffs with the increased flexibility, however, as KNN does not 
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provide any information about which predictor variables are important.  Also, the KNN 

classifier requires selection of an appropriate K value.     

 
Generalized Additive Models 

Generalized additive models (GAMs) are a general framework used to extend 

linear models with non-linear functions for the predictor variables (James et al., 2013).  

GAMs can be used for both regression and classification as extensions of linear 

regression and logistic regression, respectively.  The GAM extension for logistic 

regression is presented in Equation 6 (James et al., 2013). 

 𝒍𝒍𝒍 �
𝒑(𝑿)

𝟏 − 𝒑(𝑿)�
= 𝜷𝟎 + 𝒇𝟏(𝑿𝟏) + 𝒇𝟐(𝑿𝟐) + ⋯+ 𝒇𝒑�𝑿𝒑� ( 6 ) 

GAMs offer a more flexible alternative to linear or logistic regression.  Of course, 

the GAM’s applicability depends on the data. 

 
Decision Trees 

Classification and regression trees are a very popular supervised learning method.  

This section focuses on classification trees to align with the MDI classification problem.  

Classification trees use recursive partitioning to create a flow-chart-like decision tree for 

data sets with a qualitative response (Lantz, 2013).  Recursive partitioning identifies the 

best predictor of all features and splits the data into a smaller subset.  This process is 

repeated until some threshold is met or the terminal node reaches an acceptable level of 

homogeneity.  There are numerous methods for determining the best split for a given 

subset.  James et al. (2013) prefer Gini index or cross-entropy over the classification error 

rate.  The Gini index and cross-entropy are both measures of node purity where a small 
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value indicates that the region consists primarily of the same class.  Finally, pruning 

decision trees may increase prediction accuracy and interpretability (James et al., 2013).   

Classification trees differ from regression trees in that the observations are 

classified by the majority class in a given subset, whereas regression uses the mean 

response value for the subset (James et al., 2013).  Decision trees are lauded for their 

simplicity and interpretability despite lower accuracy compared to more flexible 

supervised learning methods (James et al., 2013).   

While single decision trees tend to yield limited predictive capability with high 

variance, more advanced methods exist that employ multiple trees for prediction.  These 

advanced methods include bagging, random forests, and boosting, which tend to provide 

significant improvements in predictive performance (James et al., 2013).   

The term “bagging” is short for bootstrap aggregation.  While the bagging 

concept is generalizable to other learning methods, bagging is often used with decision 

trees to minimize variance (James et al., 2013).  James et al. (2013) describe the value 

associated with reducing variance: 

A natural way to reduce variance and hence increase the prediction 
accuracy of a statistical learning method is to take many training sets from 
the population, build a separate prediction model using each training set, 
and average the resulting predictions. 

Because training data is finite, the bootstrap method employs random sampling with 

replacement to generate numerous training data sets.  In bagging, individual trees are not 

pruned so they typically yield high variance and low bias (James et al., 2013).  With the 

trees generated, predictions are then averaged over the bootstrapped training data sets (B) 
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in order to reduce the variance.  Equation 7 presents the bootstrap aggregation equation 

(James et al., 2013). 

 
𝒇�𝒃𝒃𝒍(𝒙) =  

𝟏
𝑩
�𝒇�∗𝒃(𝒙)
𝑩

𝒃=𝟏

 ( 7 ) 

For classification trees, bagging culminates in a majority vote from the individual trees to 

determine the class label.   

Random forests are very similar to bagging except that the random forest method 

seeks to mitigate correlation among the generated trees by randomly selecting a subset of 

features available for each split (James et al., 2013).  A general rule of thumb for the 

number of features to provide is the square root of the total number of features or even a 

single predictor (Friedman, Hastie, & Tibshirani, 2001).  Ultimately, the random forests 

algorithm yields many unique individual trees that, when averaged together, yield lower 

variance thereby mitigating overfitting on the training data (Friedman et al., 2001). 

Finally, the boosting method can be applied to other learning methods but is 

commonly used with decision trees to improve predictions (James et al., 2013).  In 

employing boosting with decision trees, numerous trees are grown sequentially.  Each 

iteration of tree building uses the the previous tree to improve prediction performance.  

The three tuning parameters associated with boosting include (1) the number of trees, (2) 

the shrinkage parameter, and (3) the number of splits in each tree (James et al., 2013). 



116 

Bibliography 

 
AETC. (2015, September 14). Air Education and Training Command - “About Us.” 

Retrieved September 14, 2015, from http://www.aetc.af.mil/Home.aspx 

AF/A7C. (2008, August 14). Real Property Accountability and Reporting. USAF. 

AFCEC. (2014a). FY18-22 AFAMP Business Rules. AFCEC. 

AFCEC. (2014b, June 26). Real Property Accountability and Inventory Playbook. 
AFCEC. 

AFCEC. (2015, January 15). MDI Refinement Playbook. AFCEC/CPAD. 

AFGSC. (2015). Air Force Global Strike Command - “Welcome.” Retrieved September 
14, 2015, from http://www.afgsc.af.mil/main/welcome.asp 

Albrice, D., Branch, M., & Lee, T. (2014). Municipal portfolio stewardship with limited 
budgets: the application of matrix correlations as a tool to support resource 
allocation decisions in the public good. In Asset Management Conference 2014 
(pp. 1–12). IET. Retrieved from 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7129238 

Amadi-Echendu, J. E., Willett, R., Brown, K., Hope, T., Lee, J., Mathew, J., … Yang, B.-
S. (2010). What Is Engineering Asset Management? In J. E. Amadi-Echendu, K. 
Brown, R. Willett, & J. Mathew (Eds.), Definitions, Concepts and Scope of 
Engineering Asset Management (pp. 3–16). Springer London. Retrieved from 
http://link.springer.com/chapter/10.1007/978-1-84996-178-3_1 

Antelman, A. (2008). United States Air Force Mission Dependency Index (MDI) Proof of 
Concept Report. Port Hueneme, California: Naval Facilities Engineering Service 
Center. 

Beretta, L., & Santaniello, A. (2011). Implementing ReliefF filters to extract meaningful 
features from genetic lifetime datasets. Journal of Biomedical Informatics, 44(2), 
361–369. 

Bose, I., & Mahapatra, R. K. (2001). Business data mining—a machine learning 
perspective. Information & Management, 39(3), 211–225. 

Cox, A. (2008). What’s wrong with risk matrices? Risk Analysis, 28(2), 497–512. 

Dempsey, J. (2006, October 31). Facility Asset Management Doctrine:  A Strategy for 
Making Better Decisions at Lower Risk and Costs. 



117 

Dempsey, J. (n.d.). Mission Dependency Index. Retrieved from 
http://www.gsa.gov/graphics/ogp/03-PRA-011_R2M-y8V_0Z5RDZ-i34K-pR.doc 

DOD. (2005, April 6). Real Property Management. DOD. 

DOD. (2013, September 30). Department of Defense Base Structure Report. 

DOD. (2014, January 17). Real Property Inentory (RPI) and Forecasting. DOD. 

DOD. (2015, February 4). DOD Real Property Categorization. 

Eulberg, D. (2008). Managing Air Force Assets. Air Force Civil Engineer Magazine, 
16(1). Retrieved from http://www.afcec.af.mil/shared/media/document/AFD-
120926-125.pdf 

Executive Order No. 13327. (2004, February 6). Federal Real Property Asset 
Management. Federal Register. Retrieved from 
http://www.gpo.gov/fdsys/pkg/FR-2004-02-06/pdf/04-2773.pdf 

Fayyad, U. M., Piatetsky-Shapiro, G., & Uthurusamy, R. (2003). Summary from the 
KDD-03 panel: data mining: the next 10 years. ACM SIGKDD Explorations 
Newsletter, 5(2), 191–196. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996a). From data mining to knowledge 
discovery in databases. AI Magazine, 17(3), 37. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996b). The KDD process for extracting 
useful knowledge from volumes of data. Communications of the ACM, 39(11), 
27–34. 

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in 
databases: An overview. AI Magazine, 13(3), 57. 

Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning 
(Vol. 1). Springer series in statistics Springer, Berlin. Retrieved from 
http://statweb.stanford.edu/~tibs/book/preface.ps 

FRPC. (2011, September 20). 2011 Guidance for Real Property Inventory Reporting. 
Federal Real Property Council. 

FRPC. (2015, June 9). 2015 Guidance for Real Property Inventory Reporting. GSA. 

GAO. (1998, December). Executive Guide: Leading Practices in Capital Decision-
Making. Retrieved from http://www.gao.gov/products/GAO/AIMD-99-32 



118 

GAO. (2003, February 19). Defense Infrastructure: Changes in Funding Priorities and 
Strategic Planning Needed to Improve the Condition of Military Facilities. 
Retrieved January 4, 2016, from http://www.gao.gov/products/GAO-03-274 

GSA. (2015, April 30). Federal Real Property Counci 2015 Guidance for Real Property 
Inventory Reporting. General Services Administration Office of Government-
wide Policy. 

Günther, F., & Fritsch, S. (2010). neuralnet: Training of neural networks. The R Journal, 
2(1), 30–38. 

Hastie, T., & Qian, J. (2014, June 26). Glmnet Vignette. Retrieved January 25, 2016, 
from https://cran.r-
project.org/web/packages/glmnet/vignettes/glmnet_beta.html#log 

Hastie, T., & Tibshirani, R. (2013, December). Introduction to Statistical Learning. 
Video. Retrieved from https://www.youtube.com/watch?v=LvaTokhYnDw 

Hodkiewicz, M. R. (2015). The Development of ISO 55000 Series Standards. In 
Engineering Asset Management-Systems, Professional Practices and Certification 
(pp. 427–438). Springer. Retrieved from 
http://link.springer.com/chapter/10.1007/978-3-319-09507-3_37 

Huang, J., & Ling, C. X. (2005). Using AUC and accuracy in evaluating learning 
algorithms. Knowledge and Data Engineering, IEEE Transactions on, 17(3), 
299–310. 

Hubbard, D. W. (2014). How to measure anything: Finding the value of intangibles in 
business. John Wiley & Sons. Retrieved from 
https://books.google.com/books?hl=en&lr=&id=EAPXAgAAQBAJ&oi=fnd&pg
=PA175&dq=hubbard+how+to+measure+anything&ots=CqccAZGpG0&sig=_3o
IIHMUtD8VCS04MC_yQztU3Dg 

IBM. (2015, February 26). What is big data? [CT000]. Retrieved May 25, 2015, from 
http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html 

inside-R.org. (2016). varImp {caret}. Retrieved January 24, 2016, from 
http://www.inside-r.org/packages/cran/caret/docs/varimp 

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical 
learning. Springer. Retrieved from 
http://link.springer.com/content/pdf/10.1007/978-1-4614-7138-7.pdf 

John, G. H., Kohavi, R., Pfleger, K., & others. (1994). Irrelevant features and the subset 
selection problem. In Machine Learning: Proceedings of the Eleventh 
International Conference (pp. 121–129).  



119 

Kira, K., & Rendell, L. (1992). A Practical Approach to Feature Selection. Proceedings 
of the Ninth International Workshop on Machine Learning. 

Kononenko, I. (1994). Estimating attributes: analysis and extensions of RELIEF. In 
Machine Learning: ECML-94 (pp. 171–182). Springer. Retrieved from 
http://link.springer.com/chapter/10.1007/3-540-57868-4_57 

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of 
Statistical Software, 28(5), 1–26. 

Kuhn, M. (2012). Variable selection using the caret package. URL< Http://cran. Cermin. 
Lipi. Go. id/web/packages/caret/vignettes/caretSelection. Pdf. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.1655&rep=rep1&t
ype=pdf 

Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. New York, NY: Springer 
New York. Retrieved from http://link.springer.com/10.1007/978-1-4614-6849-3 

Kujawski, E., & Miller, G. (2009). The mission dependency index: Fallacies and misuses. 
In INCOSE International Symposium (Vol. 19, pp. 1565–1580). Wiley Online 
Library. Retrieved from http://onlinelibrary.wiley.com/doi/10.1002/j.2334-
5837.2009.tb01035.x/abstract 

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction. 
Communications of the ACM, 38(11), 54–64. 

Lantz, B. (2013). Machine learning with R. Packt Publishing Ltd. Retrieved from 
https://books.google.com/books?hl=en&lr=&id=ZQu8AQAAQBAJ&oi=fnd&pg
=PT12&dq=machine+learning+with+R&ots=_7ue-
l2lda&sig=aD7q1WDpJOdq77SM7_CyA7nOGls 

Leshno, M., Lin, V. Y., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward 
networks with a nonpolynomial activation function can approximate any function. 
Neural Networks, 6(6), 861–867. 

Liao, S.-H., Chu, P.-H., & Hsiao, P.-Y. (2012). Data mining techniques and applications–
A decade review from 2000 to 2011. Expert Systems with Applications, 39(12), 
11303–11311. 

Madaus, M. (2009, June). Asset Management Optimization Tools. 

Maddox, L. (2014). Making The List. Air Force Civil Engineer Magazine, 22(2). 

Maimon, O., & Rokach, L. (2005). Data Mining and Knowledge Discovery Handbook (1 
edition). Boston: Springer. 



120 

Maletic, J. I., & Marcus, A. (2010). Data cleansing: A prelude to knowledge discovery. In 
Data Mining and Knowledge Discovery Handbook (pp. 19–32). Springer. 
Retrieved from http://link.springer.com/chapter/10.1007/978-0-387-09823-4_2 

McElroy, R. S. (1999). Update on national asset management initiatives: facilitating 
investment decision-making. In Innovations in Urban Infrastructure Seminar of 
the APWA International Public Works Congress (pp. 1–10). Citeseer. Retrieved 
from 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.316&rep=rep1&typ
e=pdf 

Michael Grussing, Gunderson, S., Canfield, M., Falconer, E., Antelman, A., & Hunter, S. 
(2010, September). Development of the Army Facility Mission Dependency 
Index for Infrastructure Asset Management. USACE. 

National Research Council. (2008). Core Competencies for Federal Facilities Asset 
Management through 2020: Transformational Strategies. The National 
Academies Press Washington, DC. 

NAVFAC. (2008a, July). Real Property Inventory (RPI) Procedures Manual. NAVFAC. 
Retrieved from 
http://www.navfac.navy.mil/content/dam/navfac/Asset%20Management/PDFs/fin
al_P78_%20july_08_%20for_%20posting.pdf 

NAVFAC. (2008b, October). Public Works Department Management Guide. NAVFAC. 

Nichols, M. (2015). A Delphi Study Using Value-Focused Thinking For United States Air 
Force Mission Dependency Index Values. Air Force Institute of Technology, 
Wright-Patterson AFB. 

Oreski, D., & Novosel, T. (2014). Comparison of Feature Selection Techniques in 
Knowledge Discovery Process. Retrieved from 
http://www.temjournal.com/documents/vol3no4/journals/1/articles/vol3no4/Comp
arisonoffeatureselectiontechniquesinknowledgediscoveryprocess.pdf 

Peng, R. (2015). R Programming for Data Science. Leanpub. 

Revolution Analytics. (n.d.). Companies Using R. Retrieved January 29, 2015, from 
http://www.revolutionanalytics.com/companies-using-r 

Romanski, P., & Kotthoff, L. (2014, October 25). Package “FSelector.” Retrieved from 
https://cran.r-project.org/web/packages/FSelector/FSelector.pdf 

r-project.org. (n.d.). The R Project for Statistical Computing. Retrieved January 29, 2015, 
from http://www.r-project.org/ 



121 

Saeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in 
bioinformatics. Bioinformatics, 23(19), 2507–2517. 

SAF/FMB. (2014, February 27). United States Air Force Fiscal Year 2015 Budget 
Overview. SAF. Retrieved from 
http://www.saffm.hq.af.mil/shared/media/document/AFD-140304-039.pdf 

Sánchez-Maroño, N., Alonso-Betanzos, A., & Tombilla-Sanromán, M. (2007). Filter 
methods for feature selection–a comparative study. In Intelligent Data 
Engineering and Automated Learning-IDEAL 2007 (pp. 178–187). Springer. 
Retrieved from http://link.springer.com/chapter/10.1007/978-3-540-77226-2_19 

Sharp, C. (2002). An Evaluation of Facility Maintenance and Repair Strategies of Select 
Companies. Air Force Institute of Technology, Wright-Patterson AFB. 

Smith, D. (2015, January 27). Why now is the time to learn R. Retrieved January 29, 
2015, from http://opensource.com/business/14/12/r-open-source-language-data-
science 

Teicholz, E., Nofrei, C., & Thomas, G. (2005). Executive order# 13327 for real property 
asset management. IFMA Journal, November/December. Retrieved from 
http://www.graphicsystems.biz/gsi/articles/ifma_executive_order13327.pdf 

Tufte, E. R. (2006). Beautiful evidence. New York. Retrieved from 
http://www.maa.org/publications/maa-reviews/beautiful-evidence 

USAF. (2007, August 6). Air Force Policy Directive 32-90, Real Property Asset 
Management. 

USAF. (2008). Air Force Instruction 32-9005, Real Property Accountability and 
Reporting. 

USAF. (2013, December 9). Air Force 2023 Implementation Plan. Headquarters Air 
Force. 

USN. (2010, July 2). Operational Risk Management. Retrieved from 
https://www.google.com/webhp?sourceid=chrome-
instant&ion=1&espv=2&ie=UTF-8#safe=off&q=opnavinst+3500.39c 

Vance, A. (2009, January 6). R, the Software, Finds Fans in Data Analysts. The New York 
Times. Retrieved from http://www.nytimes.com/2009/01/07/technology/business-
computing/07program.html 

Vanier, D. (2001). Why Industry Needs Asset Management Tools. Journal of Computing 
in Civil Engineering, 15(1), 35–43. http://doi.org/10.1061/(ASCE)0887-
3801(2001)15:1(35) 



122 

Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59(10). 

Woodhouse, J. (2001). Asset management: Asset management processes and tools. The 
Woodhouse Partnership Ltd, UK. 

Wood, S. (2015). Core Statistics (1 edition). New York, NY: Cambridge University 
Press. 

Zumel, N., Mount, J., & Porzak, J. (2014). Practical data science with R. Manning. 
Retrieved from http://toc.dreamtechpress.com/toc_978-93-5119-437-8.pdf 

 

  



123 

REPORT DOCUMENTATION PAGE  Form Approved  
OMB No. 0704–0188  

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing 
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or 
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate 
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that 
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.  
1. REPORT DATE (DD–MM–YYYY)  
24-03-2016 

2. REPORT TYPE  
Master’s Thesis 

3. DATES COVERED (From — To) 
Sept 2014 – Mar 2016 

4. TITLE AND SUBTITLE  
Mission Dependency Index of Air Force Built Infrastructure:  
Knowledge Discovery with Machine Learning  

5a. CONTRACT NUMBER  

5b. GRANT NUMBER  

5c. PROGRAM ELEMENT NUMBER  

6.  AUTHOR(S) 
Smith, Clark W, Captain, USAF 

5d. PROJECT NUMBER  
 
5e. TASK NUMBER  

5f. WORK UNIT NUMBER  

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)  
Air Force Institute of Technology  
Graduate School of Engineering and Management (AFIT/EN) 
2950 Hobson Way  
Wright-Patterson AFB OH 45433-7765  

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
AFIT-ENV-MS-16-M-184 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)  
United States Air Forces Central Command 
Maj Andrea Griffin 
Shaw AFB, SC 
Andrea.Griffin@afcent.af.mil 

10. SPONSOR/MONITOR’S ACRONYM(S)  
AFCENT 
11. SPONSOR/MONITOR’S REPORT 
NUMBER(S)  

12. DISTRIBUTION / AVAILABILITY STATEMENT  
DISTRUBTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES       
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.  
14. ABSTRACT  
Mission Dependency Index (MDI) is a metric developed to capture the relative criticality of infrastructure assets with respect 
to organizational missions.  The USAF adapted the MDI metric from the United States Navy’s MDI methodology.  Unlike the 
Navy’s MDI data collection process, the USAF adaptation of the MDI metric employs generic facility category codes 
(CATCODEs) to assign MDI values.  This practice introduces uncertainty into the MDI assignment process with respect to 
specific missions and specific infrastructure assets.  The uncertainty associated with USAF MDI values necessitated the MDI 
adjudication process.  The MDI adjudication process provides a mechanism for installation civil engineer personnel to lobby 
for accurate MDI values for specific infrastructure assets.  The MDI adjudication process requires manual identification of 
MDI discrepancies, documentation, and extensive coordination between organizations.   
Given the existing uncertainty with USAF MDI values and the effort required for the MDI adjudication process, this research 
pursues machine learning and the knowledge discovery in databases (KDD) process to identify and understand relationships 
between real property data and mission critical infrastructure.  Furthermore, a decision support tool is developed for the MDI 
adjudication process.   Specifically, supervised learning techniques are employed to develop a classifier that can identify 
potential MDI discrepancies.  This automation effort serves to minimize the manual MDI review process by identifying a 
subset of facilities for potential adjudication.   
15. SUBJECT TERMS 
Mission Dependency Index, Infrastructure Asset Management, Machine Learning, Knowledge Discovery in Databases 
16. SECURITY CLASSIFICATION OF:  17. LIMITATION 

OF ABSTRACT  
 

UU 

18. NUMBER 
OF PAGES  
 

133 

19a. NAME OF RESPONSIBLE PERSON 
Maj Vhance V. Valencia, AFIT/ENV 

a. 
REPORT 

U 

b. 
ABSTRACT 

U 

c. THIS 
PAGE 

U 

19b. TELEPHONE NUMBER (Include Area Code) 
(937) 255-3636 x4826  Vhance.Valencia@afit.edu 

Standard Form 298 (Rev. 8–98)  
Prescribed by ANSI Std. Z39.18  

 


	Mission Dependency Index of Air Force Built Infrastructure: Knowledge Discovery with Machine Learning
	Recommended Citation

	AIR FORCE INSTITUTE OF TECHNOLOGY
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I.  Introduction
	Mission Dependency Index Background
	Problem Statement
	Machine Learning
	Research Objective and Investigative Questions
	Methodology
	Assumptions/Limitations
	Overview

	II. Literature Review
	Chapter Overview
	USAF Real Property Portfolio and Requirements
	Asset Management Background
	Asset Management Challenges
	Asset Management within the Federal Government
	Figure 1.  Asset Management Principles (Teicholz et al., 2005)
	Figure 2.  FRPC Data Elements, Performance Measures (Teicholz et al., 2005)

	MDI Background
	NAVFAC MDI Model
	Table 1.  Navy MDI Survey Questions (Antelman, 2008)
	Table 2.  Response Options for Interruptibility (Antelman, 2008)
	Table 3.  Response Options for Relocateability and Replaceability (Antelman, 2008)
	Figure 3.  NAVFAC Mission Intradependency Matrix (Dempsey, 2006)
	Figure 4.  NAVFAC Mission Interdependency Score Matrix (Dempsey, 2006)
	Figure 5.  Hypothetical Operations Group Intradependencies (Antelman, 2008)
	Figure 6.  Hypothetical Operations Group Interdependencies (Antelman, 2008)

	USAF MDI Implementation
	Figure 7.  MDI Score Distributions at Fairchild AFB (Antelman, 2008)
	Figure 8.  MDI Score Distributions at Langley AFB (Antelman, 2008)
	Table 4.  MARM Categories and Examples (Madaus, 2009)

	USAF MDI Adjudication Process
	Figure 9.  MDI Adjudication Status (Current as of Aug 2015)
	Figure 10.  MAJCOM MDI Refinement Histogram (Current as of Aug 2015)
	Figure 11.  MDI Refinement Process: Identify Discrepancies (AFCEC, 2015)
	Figure 12.  MDI Refinement Process:  Update Real Property Records (AFCEC, 2015)

	Navy MDI Limitations
	USAF MDI Limitations
	Data Facilitates Effective Asset Management
	Table 5.  Facility Attributes for Resource Allocation (Albrice et al., 2014)

	Real Property Databases
	Navy Real Property Data
	USAF Real Property Data

	Knowledge Discovery in Databases (KDD)
	Data Mining Background
	Data Mining Literature Review
	Table 6.  Data Mining Keyword Trends, 2000-2011  (Liao et al., 2012).

	Chapter Summary

	III.  Methodology
	Chapter Overview
	Knowledge Discovery in Databases (KDD)
	Step 1:  Learn the Application Domain and Establish Goals
	Step 2:  Creating a Target Data Set
	Air Force Data Set
	Table 7.  Original MDI Beta Test Data Features
	Table 8.  “Fairchild RT_FACILITIES” Original Data Features
	Table 9.  “Fairchild RT_REAL_PROPERTY_ASSETS” Original Data Features

	Navy Data Set
	Table 10. Original Navy Data Features


	Step 3:  Data Cleaning and Preprocessing
	USAF Data Set
	Table 11.  USAF Data Set Features

	Navy Data Set
	Table 12.  Navy Data Set Features


	Step 4:  Data Reduction and Projection
	USAF Data Set
	Figure 13.  USAF Data Set Feature Selection Results

	Navy Data Set

	Step 5:  Choosing the Data Mining Task
	Evaluating Classifiers
	Table 13.  Notional Confusion Matrix

	Receiver Operating Characteristics Curve
	Figure 14.  Notional ROC Curve


	Chapter Summary

	IV.  Analysis and Results
	Chapter Overview
	Steps 6 – 8: Algorithm Selection, Data Mining, Interpretation and Evaluation
	USAF Data Set
	Figure 15.  Fairchild Classifier Comparison:  Subset 1 ROC AUC Values
	Figure 16.  Fairchild Classifier Comparison:  Subset 2 ROC AUC Values
	Figure 17.  Fairchild Classifier Comparison:  Subset 3 ROC AUC Values
	Figure 18.  Fairchild Classifier Comparison:  Subset 4 ROC AUC Values
	Figure 19.  Fairchild Classifier Comparison:  Subset 5 ROC AUC Values
	Figure 20.  Fairchild Classifier Comparison:  All Features ROC AUC Values
	Inference

	Table 14.  Lasso Model Results for USAF Data Set
	Prediction

	Navy Data Set
	Figure 21.  Navy Classifier Comparison: ROC AUC Values
	Inference

	Table 15.  Lasso Model Results for Navy Data Set
	Table 16.  Lasso Model Results for Navy Data Set Category Group Feature
	Prediction

	Figure 22.  Navy Random Forests Classifier Tuning Parameter
	Figure 23.  Navy Decision Tree Comparison
	Table 17.  Cost Matrix for C5.0 Algorithm
	Figure 24.  Training Set Results for Navy C5.0 Classifier with Cost Matrix
	Figure 25.  Test Set Results for Navy C5.0 Classifier with Cost Matrix
	Figure 26.  Variable Importance:  C5.0 Classifier with Cost Matrix

	Step 9:  Using Discovered Knowledge
	Table 18.  AFCENT Real Property Data Features
	Table 19.  Classifier Results for AFCENT Installations
	Figure 27.  Facility Class Frequencies for Mission Critical Predictions
	Figure 28.  Category Group Frequencies for Mission Critical Predictions

	Chapter Summary

	V.  Conclusions and Recommendations
	Chapter Overview
	Investigative Questions Answered
	Conclusions of Research
	Significance of Research
	Recommendations for Action
	Recommendations for Future Research
	Summary

	Appendix A.  Data Mining Algorithms
	Logistic Regression
	Linear Discriminant Analysis
	Quadratic Discriminant Analysis
	K-nearest Neighbors
	Generalized Additive Models
	Decision Trees

	Bibliography

