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RESEARCH Open Access

Sparsening filter design for iterative soft-input
soft-output detectors
Raquel G Machado1*, Andrew G Klein1* and Richard K Martin2

Abstract

A large body of research exists around the idea of channel shortening, where a prefilter is designed to reduce the
effective channel impulse response to some smaller number of contiguous taps. This idea was originally conceived
to reduce the complexity of Viterbi-based maximum-likelihood equalizers. Here, we consider a generalization of
channel shortening which we term “channel sparsening”. In this case, a prefilter is designed to reduce the effective
channel to a small number of nonzero taps which do not need to be contiguous. When used in combination with
belief-propagation-based maximum a posteriori (MAP) detectors, an analogous complexity reduction can be
realized. We address the design aspects of sparsening filters, including several approaches to minimize the bit error
rate of MAP detectors. We devote attention to the interaction of the sparsening filter and detector, and
demonstrate the performance gains through simulation.

Keywords: belief propagation, turbo equalization, channel sparsening, channel shortening

1 Introduction
Intersymbol inteference (ISI) caused by frequency selec-
tive channels is one of the chief impairments faced by
modern, high data-rate communication receivers. The
issue of compensating for ISI has been studied at length
over the past five decades, and a wide range of strategies
are available for use by communication system designers.
For optimal performance, a maximum a posteriori
(MAP) or maximum-likelihood (ML) sequence estimator
may be implemented using the Bahl-Cocke Jelinek-Raviv
(BCJR) or Viterbi algorithm, respectively. These optimal
approaches, however, are exponentially complex in the
number of channel coefficients, and consequently subop-
timal ISI compensation techniques are used in most
applications.
Sparse impulse responses are characterized as having

only a small fraction of nonzero coefficients. This behavior
can arise, for example, in underwater acoustic communi-
cation channels or in terrestrial communication channels
over hilly terrain. Compensation of sparse ISI channels is
considerably challenging since these channels can often
have very long delay spreads, and optimal approaches like

BCJR and Viterbi are therefore infeasible. Recently, a MAP
detector employing belief propagation (BP) was proposed
[1] for ISI compensation in sparse channels. The proposed
scheme is attractive because it permits near-optimal per-
formance with complexity that depends only on the num-
ber of nonzero coefficients. The complexity of this
algorithm is exponential in the number of nonzero chan-
nel coefficients, however, so it may still be prohibitively
complex for the majority of applications. A hybrid version
of this detector was proposed [2] which uses a linear pre-
filter in the receiver just before the BP-based MAP detec-
tor. By designing the prefilter so that the combined
response of the sparse channel and prefilter has a reduced,
limited number of nonzero coefficients, the use of the BP-
based detector becomes feasible in a wider range of
applications.
The utility of the hybrid structure in [2] has been

demonstrated through an extensive simulation study that
showed significant error-rate improvement in sparse chan-
nels when compared with competing approaches that
employ decision-feedback equalizers. While the simulation
results are encouraging, relatively little attention is paid to
the interaction of the prefilter and the BP-based detector.
For example, the prefilter is arbitrarily designed so that the
taps of the combined response of the sparse channel and* Correspondence: raquel@wpi.edu; klein@ece.wpi.edu

1Department of Electrical and Computer Engineering, Worcester Polytechnic
Institute, 100 Institute Rd, Worcester, MA, 01609, USA
Full list of author information is available at the end of the article

Machado et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:72
http://jwcn.eurasipjournals.com/content/2012/1/72

© 2012 Machado et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:raquel@wpi.edu
mailto:klein@ece.wpi.edu
http://creativecommons.org/licenses/by/2.0


prefilter coincide with the dominant taps in the original
channel, yet no motivation is provided for this choice.
In this work, we focus on the design of sparsening pre-

filters for use with soft-input soft-output MAP detectors
of the form considered in [1,2]. While [1,2] primarily
focused on the case where the original channel is sparse,
we note that even non-sparse channels can be sparsened
with a simple linear, finite impulse response (FIR) filter.
Consequently, our work can be applied in general situa-
tions, even where the original channel is not sparse. We
address the issue of sparsening filter design with the goal
of minimizing the detector bit error rate (BER). We con-
sider the interaction of the sparsening filter and BP
detector, and develop a practically-implementable spar-
sening filter design method.
We note that channel sparsening filters can be seen as a

generalization of so-called channel shortening filters pro-
posed in [3-7]. Given an FIR channel h of length Lh, the
channel shortening problem roughly amounts to designing
a filter w so that the energy in the combined response
h⋆w is concentrated in μ < Lh contiguous taps. Channel
sparsening is nearly the same, though the μ taps which
contain the majority of the energy are not constrained to
be contiguous. Furthermore, while much of the recent
interest in channel shortening has been for application to
multicarrier systems, the original idea of channel shorten-
ing [3] was proposed for a reduced-complexity hybrid pre-
filter/ML detector which bears some resemblance to the
one considered here. More recent works such as [8] have
considered channel shortening in conjunction with itera-
tive MAP detectors. Again, however, these works impose a
constraint that the taps in the combined channel/filter
response must be contiguous. One very recent work [9]
has considered use of matching pursuit to find a sparse,
non-contiguous target impulse response (TIR), and it is
shown to yield a lower mean squared error (MSE) com-
pared to the conventional contiguous approach.
In Section 2 we present the basic system model, and in

Section 3 we describe the basic operation of the BP detec-
tor. Sections 4 through 6 focus on the design aspects of
the channel sparsening filter (CSF), while Section 7 pre-
sents simulation results which compare various sparsening
filter design methods. Finally, Section 8 concludes the
article.

2 System model
We consider the system model shown in Figure 1. A
sequence of symbols x[k] drawn from an M-ary alphabet
is transmitted through an intersymbol interference chan-
nel denoted h—which may or may not be sparse—and
additive white Gaussian noise (AWGN) n[k] with variance
σ 2
n is added. At the receiver, we employ a detector which

consists of the cascade of a CSF which we denote w,

followed by a belief-propagation-based detector [1]. As
mentioned, the BP detector is exponentially complex in
the number of nonzero channel taps. Consequently, the
purpose of the CSF is to reduce the number of nonzero
coefficients in the effective channel to some specified
quantity μ so that use of the BP detector becomes practi-
cally feasible.
Let c = h⋆w be the effective channel (or combined

response) where the ⋆ operator denotes convolution. We
assume that the channel, CSF, and effective channel are
modeled as FIR filters of lengths Lh, Lw, and Lc = Lh +
Lw-1, respectively. Thus, the received data is given by

y[k] =
Lh−1∑
l=0

h[l]x[k − l] + n[k].

After filtering by the CSF, the data is

z[k] =
Lw−1∑
l=0

w[l]y[k − l]

=
Lc−1∑
l=0

c[l]x[k − l] + v[k].

(1)

where the CSF output noise, which is colored, is given
by v[k] = n[k]⋆w[k]. Finally, the output of the CSF is
passed to the soft-input soft-output BP detector which
outputs likelihood values that can be used to make deci-
sions as to what was transmitted.
In this work, we focus our attention on the optimal

design of the sparsening filter. As such, we make the
simplifying assumption that the channel h is known per-
fectly to the receiver. It is rather straightforward, how-
ever, to extend our proposed design method to adaptive
implementations which can be employed in situations
where the channel is unknown and/or slowly time-
varying.

3 Belief propagation detector
Before discussing the sparsening filter design in detail,
we first provide some details about the BP detector. The
BP algorithm used in the detector is in the class of mes-
sage passing algorithms, and is sometimes called the
sum-product algorithm [1]. By representing the ISI
channel as a factor graph, the BP algorithm can be used
to implement MAP detection, thereby finding the

x[k] channel
h

n[k]

y[k] z[k]sparsening
filter
w

BP
detector

estimated
bits

Figure 1 System model.
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sequence x which maximizes the joint a posteriori prob-
ability density function P(x | y). The BP algorithm pro-
ceeds iteratively, and computes log likelihood ratios of
the transmitted bits which become more reliable with
each iteration. After a sufficient number of iterations,
the log likelihood ratios can be used to make bit
decisions.
To compute the likelihood ratios, the BP detector

needs to know the effective channel impulse response.
Given a finite-length filter h, it is not possible in general
to find a finite-length filter w such that the combined
response is exactly equal to some prescribed FIR
response c since the problem is overdetermined.a In
other words, in designing the CSF filter w, we must
accept that it is not possible to perfectly sparsen the
channel so that the effective channel c consists of only
μ nonzero taps. Consequently, the remaining Lc - μ taps
of c will not be exactly equal to zero in general unless
the CSF is chosen to have infinite length. Nevertheless,
to keep computational complexity at the level prescribed
by the choice of μ, we only use the largest μ taps of c in
the computation of the likelihood ratios used inside the
BP detector. As such the residual ISI contribution from
the smallest Lc - μ taps of c in (1) will be treated as
noise by the BP detector. A sufficiently large choice of
CSF length Lw, however, can ensure arbitrarily small
additional ISI.
Since the BP detector is typically implemented in the

log domain, the majority of its complexity is due to the
many summation operations which must be performed
[1]. If the BP algorithm proceeds over N total iterations,
the total complexity requires on the order of N(μ + 1)
Mμ+1 summations, where M is the size of the source
alphabet and μ is the number of significant effective
channel taps used in the detection. As such, the com-
plexity of the BP is exponential in μ, and so the system
designer can specify the total complexity by appropriate
choice of μ.
We note that the BP detector performance only truly

coincides with the MAP detector when two conditions
are met: (1) there are no cycles in the factor graph corre-
sponding to the channel, and (2) the additive noise is
white and Gaussian. In general, the first of these condi-
tions is never satisfied. In practice cycles have been
shown to be of little concern since they are a low prob-
ability event (in the case of potentially detrimental length
4 cycles) [10], or the cycles themselves do not pose a
noticeable performance penalty [1]. The second condi-
tion on the noise, however, is more serious for this hybrid
structure. Since the AWGN gets colored by the CSF, the
noise at the input of the BP detector is no longer white.b

We will address this issue in the sequel.
We emphasize that the CSF does not change the

operation of the BP detector. As the CSF changes the

effective channel taps, however, and passes the μ largest
effective channel taps to the BP detector, the CSF
obviously affects the behavior and performance of the
combined filter/detector structure. Since the BP detector
itself is unaltered from [1], it can accommodate a system
employing channel codes such as LDPC encoding con-
sidered in [1], or can readily be extended to the MIMO
case with, for example, space-time coding as in [2,8].
Since our focus is on the design of the CSF, we consider
an uncoded system.

4 Channel sparsening
In the design of the CSF w, the goal is for the number of
significant (nonzero) taps of c to be μ or less, regardless
of where they lie in c or whether they are contiguous or
not. We note that μ Î {1, 2,..., Lh} is a parameter chosen
by the system designer. If μ = 1, then the detector coin-
cides with traditional linear equalization since the goal of
the CSF design is to make the effective channel be a sin-
gle spike. At the other extreme, the choice μ = Lh corre-
sponds to “pure” BP detection as in [1] since the CSF
need not do any sparsening and can be a simple unity
gain filter. Larger choices of μ will result in an exponen-
tially more complicated BP detector, but will also result
in better BER performance.
Ideally, we would like to choose w to minimize the sys-

tem BER. As no closed form expression for the BER exists,
direct minimization of BER is intractable. Consequently,
we consider choosing w to maximize a proxy for the BER
which we term the Sparse Shortening SNR (SSSNR). In
the sequel, we will assess the validity of this metric by
measuring the proximity of the SSSNR-optimal filter to
the BER-optimal filter for some low-dimensional exam-
ples. Accordingly, we define the SSSNR as the ratio of the
useful signal power coming out of the μ large taps of c
over the total power of the received signal plus noise,

JS(w) =
σ 2
x

∥∥large taps of c∥∥2
σ 2
x

∥∥large taps of c∥∥2 + σ 2
x

∥∥small taps of c
∥∥2 + σ 2

v

=
σ 2
x

∑
k∈S |ck|2

σ 2
x

∑
k |ck|2 + E

{∣∣v[k]∣∣2}
(2)

where S is the set of the locations of the desired largest
μ taps in c. The numerator of (2) is the signal power
scaled by the power of the μ significant taps in c, and the
denominator contains the total received signal power.

Ideally, the energy in the significant taps,
∑

k∈S |ck|2, will
make up almost all of the energy in the channel,∑

k
|ck|2, since we want all other taps to be as close to

zero as possible. Ignoring noise for a moment, 0 ≤ JS ≤ 1,
and the only way to force JS ® 1 it to make all but μ taps
in c go to zero. Adding in the noise term to the denomi-
nator ensures that the residual self-interference is
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weighted comparably to the noise, so that the excess taps
are not made small at the expense of noise amplification.
The SSSNR in (2) is analogous to Melsa’s Shortening

SNR (SSNR) [4], with a few distinctions: the set of
desired taps S is not contiguous, the denominator
includes the noise power, and the denominator includes
both the desired and undesired taps (rather than just
the latter). The last distinction is for numerical reasons,
and it can be shown that keeping or omitting the
desired taps in the denominator leads to the same solu-
tion in this type of problem [[11], III.B].
Let H be the Lc × Lw tall convolution matrix of h, i.e.,

a Tœplitz matrix with first column [hT ,01×Lw−1]T and
first row [h(0),01×Lw−1]. Then let HS be the μ × Lw
matrix obtained by extracting the μ rows of H corre-
sponding to the desired nonzero tap locations, k ∈ S. As
an example, for Lw = 3, Lh = 3, μ = 2, and S = {1, 3},

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 0

h1 h0 0

h2 h1 h0

0 h2 h1

0 0 h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, HS =

⎡
⎣h0 0 0

h2 h1 h0

⎤
⎦

With these definitions, the combined response is c =
H · w, and the values of the desired nonzero taps are
contained in the vector cS = HS · w. Then we have∑

k∈S
|ck|2 = ‖HS · w‖2

∑
k

|ck|2 = ‖H · w‖2,

and the SSNR from (2) becomes

JS(w) =
wHBSw
wHCw

BS = σ 2
x H

H
SHS

C = σ 2
x H

HH + σ 2
n I.

(3)

The SSSNR expression in (3) is a generalized Rayleigh
quotient. The value of w that maximizes this quantity,
i.e., the SSSNR-optimal CSF for a given set S, is com-
puted by finding the generalized eigenvector of the
matrix pair (BS ,C) corresponding to the largest general-
ized eigenvalue. An algorithm for this general problem
is given in [[12], Section 8.7.2].
The method used to compute the tap values in [2],

which is based on [8], is mathematically similar to our
approach, with two key differences. Most importantly,
the set S is fixed in [2]. Second, [2] uses the concept of

a TIR. The optimal CSF is written as a function of the
TIR, and then the TIR is optimized. (This is implicit
within [2, Equation (25)].) The choice of CSF is “opti-
mal” in the sense that it minimizes the MSE between
the outputs of the CSF and TIR, and the TIR is optimal
in the sense that it maximizes the signal-to-noise ratio
(SNR) at the CSF output. Similar to the channel short-
ening literature where the minimum MSE and the maxi-
mum SSNR channel shorteners are equivalent [[13],
Section 5], the approach in [2] is mathematically equiva-
lent to our approach with the exception of the fixed
sparse coefficient locations. However, the minimum
MSE approach is more convoluted to implement, as two
filters must be designed rather than one.
The CSF that maximizes (3) is only optimal for a

given choice of S. As such, the design of w involves two
issues: picking the best locations for the μ nonzero taps
in c (i.e., choosing the set S), and picking the values of
the filter coefficients so that (3) is maximized. The first
issue is related to the problem of choosing the optimal
delay in linear minimum mean squared error (LMMSE)
equalization, which is known to be nontrivial since there
is no known expression for the optimal delay [14]. In
the classical equalization problem, it is feasible to con-
duct a brute-force search over the Lc possible delays.
Here, however, the problem is considerably more chal-

lenging since there are

(
Lc
μ

)
=

Lc!
(Lc − μ)!μ!

possible

choices of S. In this article, we consider three methods
of choosing the set S.

• Use the indices of the μ largest magnitude taps of
h, as in [2]. This will be referred to as Roy’s tap
selection method.
• Try all of the possible combinations. This will be
referred to as the combinatorial tap selection
method, and it is optimal (though expensive).
• Try the heuristic approach outlined below, which
will be referred to as the greedy tap selection
method.

The greedy method is as follows. First, set μ̄ = 1, and
find the location S1 of a single tap that maximizes the
SSSNR. This involves computing w for all Lc possible
tap choices. Next, set μ̄ = 2 and S = {S1,S2}. Keep S1

from the prior step, and find the location S2 such that
the best two-tap channel is produced. This involves
computing w for each of Lc - 1 values. Continue adding
one tap at a time until μ locations have been chosen.
Roy’s method requires designing a single CSF,

although the tap locations are likely far from optimal (as
will be demonstrated in Section 7). The combinatorial

method requires designing
Lc!

(Lc − μ)!μ!
filters. Finally,
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the greedy method requires designing 1
2μ(2Lc − μ + 1)

filters. It is far cheaper than the combinatorial method,
although its performance approaches that of the combi-
natorial method, as will be demonstrated in Section 7.
For example, with Lc = 20 and μ = 2, the greedy method
is 4.9 times cheaper; and with Lc = 25 and μ = 5, the
greedy method is 460 times cheaper than the combina-
torial method.

5 Noise coloration
As mentioned previously, even if the noise n[k] is white,
the CSF outputs colored noise. To see this, we let W be
a wide Tœplitz convolution matrix corresponding to the
filter wT, and compute the covariance matrix of the
noise observed by the BP detector as

E{vvH} = E
{
(Wn)(Wn)H

}
= WE

{
nnH}

WH

= σ 2
nWWH �= σ 2

n I.

This is a problem because the BP algorithm assumes
white noise. The coloration in the noise will harm the
BP performance, potentially making it worse than a clas-
sical LMMSE equalizer followed by a simple slicer.
Thus, to avoid this pitfall, we consider a penalty term
based on the squared autocorrelation of the output
noise, or equivalently of the CSF,

JA(w) =
1

‖w‖4σ 4
n

Lw−1∑
l=1

∣∣E{ vkv∗k−l}
∣∣2

=
1

‖w‖4
Lw−1∑
l=1

∣∣∣∣∣
Lw−1∑
m=0

wmw
∗
m−l

∣∣∣∣∣
2

=
1

‖w‖4
Lw−1∑
l=1

Lw−1∑
m,n=0

wmw∗
nw

∗
m−lwn−l

It can be shown that JA is equivalent to

JA =

1∫
0

( ∣∣W(f )
∣∣2∫ 1

0

∣∣W(f ′)
∣∣2df ′

− 1

)2

df + 1,

where 2πf = ω. Thus, JA penalizes non-flatness of the
spectrum of w, since JA drops to its minimum value of 1
as the spectrum W(ω) approaches any constant value ∀f.
In order to combine JS, which should be maximized

with JA, which should be minimized, we invert the for-
mer and include a relative weighting term,

J = J−1
S + βJA. (4)

The weight b can be chosen to try to force the mini-
mum of J to be in the proximity of the BER cost surface,
JE. In the next section, we look at the surfaces JS, J, and
JE in order to visualize the effect of b.

The value of b can be set several ways. The simplest is
to try various values of b and get a sense of which
values lead to good results for the class of parameter
values of interest. For example, for the parameters in
our simulations, b Î [0.1,0.5] seems to yield good
results. Alternatively, b can be included in the optimiza-
tion problem. One could search the objective function
of (4) for a new value of w (but without changing b),
then occasionally adjust b (but not w) to improve the
BER, and repeat. If b is updated on a much slower time
scale than w, then the computationally-intensive BER
does not have to be evaluated very often during the
search.
For a given value of b, (4) can be minimized over w

by any method of unconstrained non-linear optimiza-
tion. We chose to use the simplex method of [15], since
it was already available in Matlab, via the “fminsearch”
function.

6 Cost surfaces
To visualize the cost surfaces, consider the following
example. The channel is h = [1,0.5,0.9,0.3], the target
number of taps is μ = 2, the SNR is 8 dB, the CSF w has
three taps so Lc = 6, and we use the unit norm constraint
∥w∥ = 1. With this constraint, the CSF lies on a unit
sphere, and can be represented in spherical coordinates:
w0 ≜ wx = cos(θ) sin(j), w1 ≜ wz = cos(j), w2 ≜ wy = sin(θ)
sin(j). A contour plot of the SSSNR (inverted) is shown in
Figure 2; note that this is an amalgamated surface (i.e.,
maximized across all choices of S). There is symmetry of a
sort due to the fact that w and -w have the same SSSNR.
The impulse response magnitudes of the channel,

SSSNR-optimal CSF, and effective channel are shown in
Figure 3, and the μ = 2 significant taps of c are filled in.
While the the other taps are small, they are not exactly
equal to zero, and will contribute some residual ISI that is
left uncorrected by the BP detector. Note that the impulse
responses as shown have been normalized to have unit
infinity norm. In Figure 4, the ith subplot (counting across
the first row then the second row) shows the regions in
which that tap is used in the final design, with “dark” indi-
cating that the tap is used. The axes are as in Figure 2 and
we see, for example, that the sixth tap is never selected to
be one of the nonzero taps in the effective channel.
Furthermore, the amalgamated cost surface is highly mul-
timodal, with significant shape changes at the boundaries
of each tap’s usage region.
The corresponding amalgamated BER surface, shown

in Figure 5 is also highly multimodal. This plot was gen-
erated via Monte-Carlo simulation by exhaustively com-
puting the BER at the output of the BP detector for each
value of w. Here, there are two minima with nearly
equivalent BER of 0.0065 (or, four equivalent minima if
one counts symmetric pairs due to the fact that w and -w
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also yield the same BER). By comparing Figures 2 and 5,
we see that the SSSNR and BER surfaces look quite dif-
ferent. We note, however, that there are minima in nearly
identical locations. This provides some evidence that, at
least for this low dimensional example, the SSSNR is a
good proxy for BER.
Figures 6, 7, and 8 consider the added squared auto-

correlation penalizing term, and show the amalgamated
cost surface of (4) with b = 1, as well as various optimal
CSFs. These include the two local optima of the BER
cost surface, the global optimum of the SSSNR, the
near-optimum of the SSSNR with heuristically chosen
sparse tap locations, and the weighted SSSNR solution
with b = 1. We note that in Figure 6 there are two solu-
tions with nearly identical BER; the heuristic solution is
near one whereas the SSSNR solution is near the other,
and the two pairs of solutions have different active taps.
The goal is to determine which optimal solution is the
best proxy for the minimum BER solution. Adding the
squared autocorrelation penalizing term moves the
SSSNR heuristic solution past the minimum BER solu-
tion, and it appears that b should be small, say in the

range of 0 to 0.2. To further investigate the affect of b,
Figure 9 shows the BER performance of the weighted
SSSNR scheme as a function of b at 8dB SNR, and we
see that the optimal value of b occurs at 0.1.

7 Simulations
Having demonstrated that SSSNR is a good proxy for
BER, we now compare the BER of the various CSF
design approaches. We consider a longer channel than
in the low-dimensional example of the previous sections,
and we compare SSSNR and computational time among
the different design metrics and tap selection methods.
Second, we evaluate the BER for two channels employ-
ing different sparsening filters in conjunction with BP.
In the first example, we consider the channel h1 =

[0.0722,0,0,0.7217,0.6495,0,0,0.2165,0,0.0722]. We design
the CSF to sparsen the channel to μ = 2 taps, we let Lw
= 25, we transmit uncoded BPSK symbols, and we use
ten iterations in the BP detector.
The BER results are shown in Figure 10 for the three

tap selection methods outlined at the end of Section 4,
and for comparison we include the performance of a
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Figure 4 Usage maps of the six taps of the effective channel c.
Axes are identical to Figure 2. Dark areas indicate that the given tap
is one of the μ largest taps in c.
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25-tap classical LMMSE equalizer with a memoryless
slicer. The three methods employing a BP detector han-
dily outperform the LMMSE equalizer, and the greedy
tap selection approach is able to attain performance
nearly equal to the optimal combinatorial method. In
addition, we note that those methods which attempt to
pick the set of nonzero taps S to maximize the SSSNR
outperform Roy’s method by approximately 1.5 dB for
this example.
The complexity, taps selected, and the SSNR of each

tap-selection method is displayed in Table 1. The com-
binatorial approach achieved the best SSSNR perfor-
mance, but requires the design of 561 filters. On the
other hand, the greedy approach achieved almost the
same SSSNR performance with much fewer filter
designs, being more efficient than the combinatorial

method. Roy’s tap selection method needs to design
only one filter, but its SSSNR result is inferior to the
other two.
In conducting simulations, we noticed that occasion-

ally the hybrid CSF/BP structure yielded BER perfor-
mance which was inferior to that of a simple linear
equalizer with a memoryless slicer. Upon further investi-
gation, it became clear that the performance degradation
in such cases was due to noise coloring by the CSF, as
addressed in Section 5. We now consider such an exam-
ple, and show that the use of the modified cost function
given in (4) results in flatter sparsening filters, and
improves the BER performance. We now consider the
channel h2 = [-0.21, -0.36,0.72,0.5,0.21], and we again
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design the CSF to sparsen the channel to μ = 2 taps
with a CSF and equalizer of length Lw = 25. As before,
we transmit uncoded BPSK symbols, and use ten itera-
tions in the BP detector. We also add the squared auto-
correlation penalizing term to the combinatorial and
greedy SSSNR CSF design metrics. To choose the b
value, we performed a grid search with 11 values
between 0.0 and 1.0 at a 14 dB SNR and the best value
obtained was b = 0.1.
From the simulation results in Figure 11, it is apparent

that approaches without the addition of the squared
autocorrelation penalizing term perform worse than a
simple linear equalizer, at least at low to moderate SNR.
Overall, the addition of the squared autocorrelation
penalizing term improves the BER performance for both
the combinatorial and greedy approaches, by approxi-
mately 0.7dB. Also, Roy’s tap-selection scheme performs
significantly worse than the classical LMMSE equalizer
for this example.
The motivation given for Roy’s tap-selection approach

[2] was that by choosing the locations of the desired
nonzero taps (i.e., the set S) to match the locations of
strong arrivals of the incoming signal, there is good
“spectral matching” between the channel and the TIR
which results in reduced noise enhancement. However,
it is unclear that matching dominant tap locations
between the channel and TIR (regardless of the tap
values) results in spectra with a similar shape. In fact, in
the example that intended to motivate the reduced
noise enhancement of their approach [2, Figure 12], the

CSF apparently amplifies the noise by about 40 dB in
the region of a deep channel null. Thus, while extensive
simulations in [2] have demonstrated significant error-
rate improvement when compared with competing
approaches that employ decision-feedback equalizers, we
note that further BER improvement can be made by
wiser design of the CSF.
Examination of the frequency responses of the CSF

and combined response for this second simulation sce-
nario provides further evidence that does not support
Roy’s reduced noise enhancement claim. Figure 12
depicts the frequency response of each sparsening filter
chosen by the combinatorial approach, the combinator-
ial approach with addition of the penalizing term, and
Roy’s method. Roy’s filter amplifies the input signal over
the frequencies in the center of the band. Comparing
the original channel h2 with the combined responses as
shown in Figure 13 provides another picture showing
that Roy’s chosen filter amplifies noise in the center of
the band, which contributes to the degraded perfor-
mance pictured in Figure 11.
Conversely, by adding the penalizing term to the com-

binatorial SSSNR approach, the resultant sparsening fil-
ter becomes flatter, producing an effective channel
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Table 1 Computational complexity, taps selected, and
SSSNR achieved at 8dB SNR

Tap-selection
method

Number of filters
designed

Taps
selected

SSSNR

Combinatorial 561 {17,18} 6.9344

Greedy 67 {18,19} 6.9336

Roy 1 {4,5} 5.7961

2 4 6 8 10 12 14 16
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 

Roy
SSSNR comb.
SSSNR comb.+autocorr.
SSSNR greedy
SSSNR greedy+autocorr.
Linear Eq.

Figure 11 Bit error rate with h2 using same CSF design metrics
shown in Figure 10 and addition of the squared
autocorrelation penalizing term.
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similar to the original one. This, in fact, reduces the
noise enhancement. Moreover, the flatter frequency
response shown by the CSF will also reduce noise color-
ing thereby improving BP detector BER performance.
Both reasons explain the error performance improve-
ment and motivate the incorporation of the squared
penalizing term to the CSF design. The optimal choice
of b however, remains an open issue and is likely to be
channel-dependent.
In addition, to provide further evidence of the proposed

method’s efficacy, we also considered the ITU Vehicular A
channel [16] that has six paths arriving at [0, 310, 710,
1090, 1730, 2510] ns and a power-delay profile of [0, -1,
-9, -10, -15, -20] dB. In our simulations we used a square-
root raised cosine pulse and a symbol duration of T = 80
ns, which generally resulted in a sparse equivalent discrete
channel with average length of 21 taps. Also, we transmit
uncoded BPSK symbols, use ten iterations in the BP detec-
tor, let μ = 2 non-zero taps, and use a CSF (and for com-
parison, an equalizer) of length Lw = 32. Again, to
calculate the b value, we used a grid search at 20 dB SNR
and the valued obtained was b = 0.2.
Figure 14 shows the following tap-selection methods in

comparison with the linear equalizer: Roy’s, combinatorial,
greedy and greedy with squared autocorrelation penalizing
term. Once again the methods employing BP detectors
outperformed the linear equalizer and the method with
squared autocorrelation had the best performance. More-
over, at a 10-5 BER the greedy method with squared auto-
correlation outperforms the combinatorial method by
approximately 2dB.
Finally, we again emphasize that this hybrid detector is

quite flexible since its complexity can be adjusted by the
system designer. While the complexity scales exponentially
with μ, implementations are quite feasible on modern
hardware in a wide range of applications [17]. While linear
and decision feedback equalizer complexity scales only lin-
early with the channel length Lh, and are therefore attrac-
tive for applications where hardware simplicity is at a
premium, the performance advantage offered by the

hybrid BP detector (reported here and in [2]) may well be
worth the additional complexity. Finally, when compared
with traditional Viterbi and BCJR detectors which scale
exponentially with Lh, the hybrid BP detector appears to
have a considerable advantage in terms of complexity [1].

8 Conclusions
In this work we have considered the design of sparsening
filters as a way to reduce the complexity of iterative soft-
input soft-output MAP detectors. By designing the spar-
sening filter so that the combined response of the (possibly
non-sparse) channel and filter has a sparse impulse
response, i.e., a response with only a handful of significant
taps, the use of a BP-based MAP detector becomes feasible
for detecting the bits. We proposed a filter design metric
called the SSSNR, and showed that maximizing this quan-
tity serves as a good proxy for minimizing BER. We devel-
oped a greedy algorithm for tap selection, and showed that
this approach yields near-optimal performance with a sig-
nificant reduction in complexity when compared to the
optimal, combinatorial tap selection approach. In addition,
we treated the issue of noise coloration introduced by the
sparsening filter, and showed that the addition of a noise
penalty term to the SSSNR results in solutions with a flat-
ter frequency response, thereby limiting the amount of
noise coloration. Numerical simulations compared our
scheme with an existing approach due to Roy, and showed
that significant performance gains can be had by intelli-
gently choosing the tap locations.
Future work in this area will consider fractionally-

spaced or adaptive versions of this approach, as well as
the effects of sparsening filter length on performance.
The authors would like to thank Yanjie Peng at WPI for
providing the initial version of the simulation code to
implement the BP detector.

Endnotes
aNote that a SIMO system employing either multiple
receive antennas or fractional sampling can perfectly
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combinatorial with addition of penalizing term, and Roy’s
approach.
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sparsen the channel under certain conditions on sub-
channel roots [18]. bWhile it is possible that the noise
observed at the receiver front-end is not white to begin
with, we make the standard AWGN assumption
throughout.
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