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Carbon nanotube (CNT) yarn was functionalized using sulfuric and nitric acid solu-
tions in 3:1 volumetric ratio. Successful functionalization of CNT yarn with carboxyl
and hydroxyl groups (e.g., COOH, COO–, OH, etc.) was confirmed by attenuated total
reflectance spectroscopy. X-ray diffraction revealed no significant change to the atomic
in-plane alignment in the CNTs; however, the coherent length along the diameter was
significantly reduced during functionalization. A morphology change of wavy exten-
sions protruding from the surface was observed after the functionalization treatment.
The force required to fracture the yarn remained the same after the functionalization
process; however, the linear density was increased (310%). The increase in linear
density after functionalization reduced the tenacity. However, the resistivity density
product of the CNT yarn was reduced significantly (234%) after functionalization.

Keywords: carbon nanotube yarns; functionalization; textile; conductivity

1. Introduction

There is a need in commercial applications for textiles that have high electrical conduc-
tivity and low density. These fabrics can be used in many applications such as static
charge dissipation, conducting wire, shielding against electromagnetic interference, wear-
able electronics, etc. [1]. In order to make common textiles conductive, fabrics are coated
with polypyrrole that has a resistivity of ~5.56E−3 Ohms cm and a density of ~1.44 g/cm3,
which translates to a resistivity density product of ~80,000 nOhms m g/cm3 [2]. This
property is considerably inferior when compared to metals. Iron has a resistivity density
product of 757 nOhms m g/cm3, and the more conductive copper has 150 nOhms m g/
cm3. However, metals are not conducive for use in textile and textile-type applications
owing to weight, stiffness, and safety. Thus, carbon nanotube (CNT)-based structures
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have potential that can bridge this gap when low electrical resistivity and low density in
these cases are desirable [3].

A great deal of research has been conducted to create long CNT structures for various
technological applications such as conductive textiles. One such method is drawing multitudes
of short CNTs into a long yarn [4]. Unfortunately, themechanical properties of the CNTyarn are
not as impressive as an individual CNT [5]. This is due to the fact that CNTyarn is made up of
multitudes of short CNTs, so the mechanical properties are constrained by the forces required to
move one CNT relative to other. Thus, weaker mechanical interlocking and van der Waals
forces between CNTs play an important role in fracture resistance of CNT yarn, and not strong
covalent bonding as is seen in an individual CNT. Also, the yarn density and the large difference
between Young’s modulus in tension and Young’s modulus in compression play an important
role in the mechanical properties of CNT yarn [6–8]. Much success in improving mechanical
properties has been linked to the optimization of the CNT drawing process parameters [9,10].
Zhong et al. have used transmission electronmicroscopy and X-ray diffraction (XRD) studies to
characterize how CNTs collapse, thus increasing the density and potential benefits of mechan-
ical interlocking [11]. Gui et al. have studied the control of macro- and microstructure of CNT-
based structures for applications including mechanical energy absorption [12].

Others have tried to improve the properties of CNT yarns by secondary treatments after
the drawing process. Xiao et al. functionalized CNTs in the yarn by drawing the yarn
through barium nitrate. The barium-functionalized yarn performed well as cathodes at high
temperatures (1317 K) [13]. Trakakis et al. functionalized buckypaper by oxidation and
epoxidation reactions [14]. The oxidation created a denser buckypaper, while the epoxida-
tion created a more foam-like structure. Also, they found that the mechanical and electrical
properties increased with higher density. Wei et al. made a CNT/polyvinyl alcohol (PVA)
composite yarn with a reported 2.2 GPa tensile strength by utilizing oxygen plasma process
to functionalize the CNT ribbon and then dipping in a PVA solution [15]. Malik et al. also
made CNT/PVA composite but in the form of a sheet, and the manufacturing process is
discussed in detail in [16]. Carretero-González et al. modified CNT yarn by chemically
unzipping the CNTs to form nanoribbons of graphene. The resulting nanoribbon yarn has
very high specific capacitance properties [17]. Jang et al. also produced nanoribbons by
unzipping CNTs to use as point emitters for high current field emission [18].

In this study, CNT yarn was functionalized via sulfuric acid and nitric acid treatment
in3:1 volumetric ratio. The treated and non-treated CNTs were characterized by attenuated
total reflectance (ATR) module connected to a Fourier transform infrared spectroscopy,
scanning electron microscopy (SEM), and XRD. The resistance, tensile strength, and mass
of the prepared samples were measured for the treated and non-treated CNT yarns.

2. Experiments

2.1. Materials

CNT yarn was procured from the Nanocomp Technologies, Inc., Concord, New Hampshire,
USA. The CNT 1 yarn has a linear density of 0.98 ± 0.10 tex. Tex is the linear density
commonly used in textile applications where the density of the fiber can change depending on
the packing factor and has the unit of g/km. Acid treatment of the as-received CNT yarn was
performed by submerging 100 mm yarn segments into a 3:1 volumetric solution of sulfuric
acid and nitric acid for 35 min under slight tension. Slight tension was applied to hinder the
yarn from unraveling, however this still occurred to a little extent. The 35 min soak time was
chosen based on a preliminary experiment where the resistance of the wire in the bath was
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measured and was found to increase significantly after 35 min. Following acid treatment, the
yarn was dipped in deionized water multiple times to remove the residue acid.

2.2. Experiments

2.2.1. Linear density

A Mettler Toledo XP26 microbalance (Schaffhausen, Switzerland) was used to determine the
mass of the CNTyarn specimens. The measured mass from 100 mm length was used to find the
linear density (g/km or tex) for each specimen. An accurate cross-sectional area of the yarns was
difficult to determine due to the varying degrees of CNT packing factors, micro- and nanoscale
gaps/voids, and properties that are dependent on processing parameters. For example, since
CNTs are tubular structures, there is a gap inside. A yarn has ribbon–ribbon boundaries that
would also produce micro gaps [19]. Thus, presentation of the strength properties in terms of
tenacity (N/tex) is more appropriate and allows the yarns to be readily compared to other studies
and fabrication methods. Tenacity, linear density, and density will be mentioned often hence-
forth. For clarification, tenacity is force divided by linear density (N/tex), linear density is weight
divided by length (g/km), and density is weight divided by volume (g/cm3).

2.2.2. Tensile test

The CNT yarn specimens were tested until they fractured under a monotonic tensile
loading condition using an Agilent T150 UTM test machine with a 500 mN load cell.
CNT yarn specimens with a gauge length of 100 mm were glued between two thin pieces
of plastic and inserted into the grips. On both ends, the CNT yarn was glued in between 2
thin 20 mm long plastic pieces. The gauge length was 100 mm. The specimens were
pulled at a strain rate of 0.001 mm/(mm sec)).

2.3. Resistance

Resistance was measured before and after the process of functionalization. A four-point
probe technique was used to measure the electrical resistivity using a Keithley 2400
SourceMeter (Cleveland, OH, USA) with a current of 0.1 A. A jig was used to ensure that
the distance between each probe was 1 cm when measuring resistivity.

As stated previously, it is difficult to accurately determine the cross-sectional area of
CNT yarn due to nanoscale gaps and varying packing density of CNTs. Resistivity density
product (ρ × d) is independent of area as seen below:

ρ� d ¼ R
A1

,
� m

LA1
(1)

ρ� d ¼ R
m

,L
(2)

where ρ is resistivity, d is density, A1 is cross-sectional area of the yarn, R is resistance
along the length (,) of the yarn, and m is mass of yarn of length L of the CNT yarn.
Furthermore, presenting the resistivity density product provided a convenient and con-
sistent comparison among different materials.
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2.4. Characterization tests

The CNT yarn was characterized via three different methods: ATR, SEM, and XRD. Thermo
Nicolet Avatar 360 (Madison, WI, USA) with SmartPerformer ATR accessory was used for
ATR. AQuanta 450 (Brno-Královo Pole, Czech Republic) SEM set at 2 kVacceleration voltage
with a spot size of 2.5 was used to image the CNT yarn. XRD tests were performed using a
Bruker D2 Phaser (Fitchburg, WI, USA; 30 kV, 10 mA) equipped with sealed Cu X-ray tube
(λ = 1.54178 Å) and a Lynxeye linear position sensitive detector. The XRD data were collected
with a 0.05° step size at 1 sec dwell time. For these measurements, CNTyarn was cut into 1 cm
length samples which were spread out on zero background specimen holders, off-axis silicon. A
split PearsonVII functionwas used to calculate the peak positions and full width at half maxima.

3. Results and discussion

3.1. ATR tests

The CNT yarn was tested using ATR spectroscopy in air with a slight mechanical pressure
placed above the yarn to flatten the yarn against the ATR crystal. The results obtained
from the ATR spectroscopy test can be seen in Figure 1. Figure 1(a) shows the results for
the as-received yarn. As expected, the pure CNTs made up of carbon show very little
signal. Carbon strongly absorbs infrared light in a broad range of frequencies making it
difficult to resolve the details. Also note that the spectrum is flat from 2500 to 3600 cm−1,
which shows there are no hydroxyl groups in the as-received specimen.

Figure 1(b) shows the results for the functionalized CNT yarn. Two peaks are detected
at 1140 and 1030 cm−1, which is typical of C–O and C–O–C stretching that were due to
the inherent impurities in the as-received CNTs. A strong peak at 1700 cm−1 confirms the
existence of the C=O bond and the broad peak around 3400 cm−1 confirms the existence
of the OH bond stretching. Based on the test results, it can be concluded that the CNT
yarns were successfully functionalized with carboxyl and hydroxyl groups (e.g., COOH,
COO–, OH, etc.), and the results are consistent with other studies conducted on CNT
powders [20,21]. The CNTs reacted with nitric acid solution to form carboxyl functional
groups on the CNT yarn. This reaction is as follows:

CNTþ HNO3 !H
þ
CNT� COO� þ NO2 þ H2O ! CNT� COOH (3)

3.2. Morphology analysis

There was a significant morphology change due to the functionalization of the CNTyarn. The
morphology of the as-received CNT yarn can be seen in Figure 2(a). The yarn has a smooth
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Figure 1. ATR results of (a) as-received and (b) treated CNT yarn.
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surface and a slight twist along the longitudinal axis. After functionalization (Figure 2(b)), the
surface still has a smooth appearance, but new wavy extensions protrude out of the surface.
Furthermore, the functionalized CNT yarn (Figure 2(c)) reverts back to the ribbons of CNTs,
as can be seen in Figure 2(d). This morphology change can be explained by hydrophobic
interactions, van der Waals and capillary force interactions between the CNTs, and functional
group repulsions (or charge repulsions) [22]. There are many voids/porosity through which
the solution can seep into the yarn by capillary force and can rearrange the CNT structure.

3.3. XRD tests

3.3.1. (001) Peak

XRD was used to analyze the crystalline nature of individual CNTs in the CNT yarn
before and after the functionalization process as shown in Figure 3. The first peak at 25.9°

Figure 2. SEM image of (a, c) as-received and (b, d) functionalized CNT yarn.
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Figure 3. XRD pattern of as-received and functionalized CNT yarn.
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is identified as the (002) peak that is commonly seen due to the spacing between graphitic
layers in carbon-based materials. Utilizing Bragg’s law, the distance between these layers,
or more specifically the distance between individual CNTs in the MWCNT (d(002)-
spacing) can be determined. The (002) d-spacing was found to be 3.42 Å, which is
congruent with the accepted value [23] for CNTs.

From Figure 3, it can be seen that the functionalized CNT yarn (002) peak is
considerably broader than the counterpart from the as-received yarn. The increase in
broadening likely occurs due to an increased strain between graphic layers as well as
partial reduction in the number of layers (walls) as a result of the functionalization
process. Thus, it can be concluded that the 35min exposure to the sulfuric and nitric
acid solutions in 3:1 volumetric ratio created significant defects disrupting the d(002)-
spacing and resulting in peak broadening.

3.3.2. (100) Peak

The (100) peak represents the curved graphene sheets that make up the structure of
MWCNTs [23]. The (100) peak intensity is affected by diffractions from in-plane regularity.
Based on the data in Figure 3, it can be seen that once the (002) peaks are normalized to
each other, there is a limited decrease in intensity from the (100) peak after the functiona-
lization process. This shows that functionalization did not catastrophically affect the in-
plane regularity due to translation, twisting, or altering the helicity between tubes in a given
CNT. Also, the shape of the (100) peak broadening was comparable for both, which
suggests no appreciable reduction in the size of the nanotubes or increased strain along
the length of the nanotubes due to functionalization. Further, the fact that (100) peak did not
decrease in intensity proves that the CNTs did not chemically unzip into nanoribbons.

3.4. Functionalization

The electrical and mechanical properties were tested for the as-received and the functio-
nalized CNT yarns. As described earlier, the area of a CNT yarn is difficult to calculate
due to voids and surface irregularities. Thus, the data are reported in the form of resistivity
density product. Figure 4 shows the resistivity density product for the as-received and
functionalized CNT yarn. There is a significant decrease in the resistivity density product,
i.e., from 2860 to 1224 nOhms m g/cm3, after the functionalization process. This
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Figure 4. Resistivity density product of as-received and functionalized CNT yarns.
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corresponds to a 234% decrease in resistivity density product. Further, the functionalized
CNT yarn is highly conductive among the textile/woven fibers. For example, fabrics,
which are commonly coated with polypyrrole, have resistivity density product of
~80,000 nOhms m g/cm3 [2]. Thus, the functionalized CNT yarn is a better conductive
material compared to the commonly used textile materials coated with polypyrrole. On the
other hand, the resistivity density product of the functionalized CNT yarn is slightly
higher than that of metals, e.g., resistivity density product of iron and copper are 757 and
150 nOhms m g/cm3, respectively.

A linear density is commonly used in textiles to assess their strength, i.e., strength is
expressed in terms of tenacity (N/tex or N km/g). This is because the packing factor of
fibers in the yarn can vary depending on the manufacturing process and parameters. The
packing factor can significantly alter the physical and mechanical properties. Figure 5
shows the linear density (tex = g/km) of CNT yarn. From the chart, the linear density of
the as-received and functionalized CNT yarn is 0.98 ± 0.10 and 3.04 ± 0.15 tex, respec-
tively. This 310% increase in linear weight is not only due to the addition of oxygen and
hydrogen from the functionalization process but also due to the contraction of the yarn.
Upon soaking in the acid bath, the yarns untwist to form a ribbon-type shape from a
cylinder, thus changing its geometry along with contraction in length.

Unlike resistivity density product, there is a considerable decrease in tenacity after the
functionalization process. As shown in Figure 6, the tex of the as-received CNT yarn
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Figure 5. Tex of as-received and functionalized CNT yarns.
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changed from 55 ± 5.2 to 21 ± 2.1 N/tex after functionalization of the CNT yarn.
However, the actual failure loads of the as-received and functionalized CNT yarns were
almost comparable (Figure 7). This indicates that the functionalization process had
practically no effect on the tensile failure load directly, but the tenacity value was
significantly reduced due to an increase in the weight. As a CNT yarn is made up of
multitudes of CNTs, the limiting factor involved in tensile strength is the force required to
slide one CNT past the other, and not the tensile strength of the individual CNT.
Therefore, functional groups did not appear to increase mechanical interlocking within
the yarn that would prevent sliding between CNTs and increase strength; however, the
conductivity increased (resistivity density products decreased) due to the functional
groups which increased the mobility of electrons within the CNT yarn.

4. Conclusion

CNT yarns were successfully functionalized with carboxyl and hydroxyl groups (e.g.,
COOH, COO–, OH, etc.) by submerging the CNTs into a 3:1 volumetric bath of sulfuric
and nitric acid solutions for 35 min. During the submersion of the CNT yarn into the acid
bath, the yarn’s morphology changed from a smooth surface to a smooth surface with
wavy extensions protruding from the surface. Also, the twisted yarn partially untwisted
into a yarn ribbon. The functionalization of the individual CNT did not significantly
change the in-plane regularity, however, after 35 min of exposure to the acid bath created
significant atomic defects that disrupted the atomic pattern along the length of the
diameter. The functionalization process increased the linear density by 310% and resis-
tivity density product by 234%. The functionalized CNT yarn has superior resistivity
density product (1224 nOhms m g/cm3) when compared to conventional conductive
coatings of polypyrrole (80,000 nOhms m g/cm3). CNT yarn is a promising conductive
fabric material.
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