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Abstract
Wepresent twomethods to generate an electromagnetic dark and antidark partially coherent source.
Thefirst generalizes a recently published scalar approach by representing the stochastic electric field
vector components as sums of randomlyweighted, randomly tilted planewaves. The secondmethod
expands thefield’s vector components in series of randomlyweighted dark and antidark coherent
modes. The statisticalmoments of the randomweights—planewaves in the formermethod, coherent
modes in the latter—are found by comparing the resultingmeans and covariances to those of the
desired electromagnetic dark and antidark source.We validate bothmethods by simulating the
generation of an electromagnetic dark or antidark source and comparing the simulated results to the
corresponding theoretical predictions.Wefind that bothmethods converge to the theoretical,
ensemble-averaged (long-time-averaged) statistics within roughly 500 random field instances. The
methods presented in this paper willfind use in applications that utilize dark and antidark beams, e.g.
atomic optics and optical trapping.

1. Introduction

Dark or antidark (DAD) beams are a type of dispersion-free or diffraction-free wave that has a dark or bright
notch in on-axis intensity. Thesewaveswere first discovered as solitons in optical fibers [1, 2]. Ponomarenko
et al. [3] showed that similar DADwaves can exist in linearmedia, granted the optical field is partially coherent.

Since that time, scalarDADpartially coherent sources (PCSs) have been experimentally realized using the
source’s coherent-mode representation [3, 4] and by passing a J0-Bessel correlated PCS [5–7] through a
wavefront-folding interferometer [8, 9]. In another recent paper, the authors showed thatDADbeams could be
realized from stochastic opticalfields that are theweighted sums of randomly tilted planewaves [10].

Although a generalized, electromagnetic version ofDADbeamswas formulated shortly after Ponomarenko
et al.ʼs original paper [11], to our knowledge, an electromagnetic DADPCShas never been synthesized. [11] is
very general and describes a whole class of diffraction-free, electromagnetic PCSs composed of uncorrelated
Bessel beams, of which vectorDADbeams are one example.

Here, we generate an example electromagnetic DADbeamdiscussed in [11] in twoways. Thefirst extends
the scalar approach presented in [10], where the vector components of the electric field are formed from the
randomlyweighted sums of randomly tilted planewaves. In the second approach, we expand the stochastic
vector components of the electric field in sums of randomlyweightedDADcoherentmodes. In bothmethods,
wefind the statistics of the randomweights by taking the auto- and cross-correlations of the field’s vector
components and comparing those correlations to the corresponding electromagnetic DAD source cross-
spectral density (CSD)matrix elements.

In the next section, we present the statistical optics theory necessary to understand and implement both
approaches.We then simulate the generation of an electromagnetic DADPCSusing bothmethods and compare
the results to the corresponding theoretical expressions. Lastly, we conclude ourworkwith a brief summary.
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2. Theory

Webeginwith the electromagnetic DAD source CSDmatrix W given in equations (41) and(42) of [11]:

( ) ( ∣ ∣) ( ∣ ∣)
( ) ( ∣ ∣) ( )
r r r r r r
r r r r

k c k
k

= - + +
= -

aaW J J

W aJ

,

, ,
1

xy

1 2 0 1 2 0 1 2

1 2 0 1 2

whereα=x, y, ˆ ˆr = +x yx y , ( )J x0 is a zeroth-orderBessel functionof thefirst kind,κ is a real constant and related
to the coherencewidthof the source,χ is a real constant subject to the constraint ∣ ∣c  1, anda is a complex
constant such that ∣ ∣ ∣ ∣c-a 1 . The coherent-mode representationof the above electromagneticDADPCS is
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The propagation and polarization characteristics of these beams can be found in [3, 11].

2.1.Method 1: genuineCSD function criterion
In [10], using the genuine CSD function criterion [12, 13], the author showed that a scalarDAD source could be
produced by summingmany independent realizations of
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where ˆ ˆq q= +v x yv vcos sin is a random vector. The radius v and angle θ are drawn from the following joint
probability density (PDF) function:
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where ( )d x is theDirac delta function.
To extend thismethod to produce the electromagnetic DAD source in equation (1), we let the electric field be

( ) ˆ ( ) ˆ ( ) ( )r r r= +E x yE E , 6x y

where the stochastic vector components are

( ) ( · ) ( · ) ( )r r rk k= + -a a av vE b cexp j exp j . 7

In equation (7), the bα and cα are complex randomnumbers. This stands in contrast to the scalar case, where the
planewave coefficients are deterministic [see equation (4)].

Taking the auto-correlation of equation (7) and assuming that bα and cα are statistically independent of v yields
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where r r r= a d, 1 2. Themoments containing the complex exponentials are equivalent to the joint
characteristic functions of v . Using the joint PDF in equation (5), thesemoments are easy to compute, and
equation (8) simplifies to
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Comparing equations (1) and(9) and expanding bα and cα into real and imaginary parts reveals the
following equalities:
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For simplicity, we let the variances and covariances on the left-hand sides of equation (10) be equal producing
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Referring back to equation (7), we now take the cross-correlation ofEx andEy yielding
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Comparing the aboveWxy to the desired one in equation (1) reveals
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to complete the derivation.
Note that we chose the secondmoment values in equations (11) and(14) solely for convenience. Any values

that satisfy the linear constraint equations in equations (10) and(13), as well as the conditions onχ and a
specified below equation (1), are valid.

In summary, an electromagnetic DADPCSwith aCSDmatrix given in equation (1) can be produced by
incoherently summing stochastic vector fields, whose components take the formof equation (7). The radius v
and angle θ of the randomvector v are drawn from the joint PDF given in equation (5). Lastly, the random
complex coefficients bα and cα are zeromean and have a covariancematrix K equal to
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The statistical distributions of bα and cα are irrelevant as long as the first and secondmoments are equal to those
specified above. Because it is easy to generate correlated normal randomnumbers, we recommend letting bα and
cα be jointlyGaussian distributed.

2.2.Method 2: coherentmodes
Here, we expand Ex andEy in series ofDADcoherentmodes, where the coherentmodeweights are complex
randomnumbers.

We note that a similar expansionwas first employed byKim andWolf [14], although for a different purpose.
By treating theHermitian CSDmatrix W diagonal elements (Wxx andWyy) as scalar PCSs and expanding each in
two distinct sets of orthogonal coherentmodes, Kim andWolf were able to derive a bi-modal (double series)
expansion for the non-Hermitian off-diagonal elements. This procedure, requiring the solutions of two
uncoupled integral equations tofind themodes ofWxx andWyy, is considerably simpler than the traditional
approach, which requires solving a set of coupled integral equations. Of course, the price paid for this simplicity
is the double series representation forWxy.

In our case however, becauseWxx andWyy have the same coherentmodes [see equation (2)], this approach
turns out to be quite convenient.We begin by expanding Ex andEy as
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whereΦn is defined in equation (3) and bn and cn are random complex numbers drawn from some arbitrary
distribution.

It is important to emphasize that this approach is fundamentally different to using coherentmodes to
generate scalar PCSs. In the latter, the deterministicfield consists of a single weightedmode. The scalar PCS is
formed by summing theweightedmodes incoherently typically at the detector [4, 15, 16]. Here, a stochastic field
realization is formed from the randomlyweighted, coherent addition ofmanymodes. The electromagnetic PCS
is formed by incoherently summingmany statistically independent vector field realizations.

Taking the auto-correlation of equation (16) yields
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with a similar expression forWyy. Comparing this expression (and theWyy expression) to the coherent-mode
representation in equation (2) reveals that
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where δnm is the Kronecker delta function.
Wenow turn our attention to the off-diagonal elements. Taking the cross-correlation of the vector

components in equation (16) produces
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Comparing this expression toWxy in equation (2) reveals the following:
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Wenote that because of theKronecker delta functions in equations (18) and(20), there is no coupling
between different indexmodes in equation (16). Taking this into account and expanding bn and cn in real and
imaginary parts produces
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Again, for simplicity, we let
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Like inmethod 1, the values specified for the secondmoments in equation (22) are chosen for convenience.
Any values that satisfy the linear constraint equations in equation (21) and theχ and a conditions stated above
are valid.

Summarizing thismethod, an electromagnetic DADPCSwith aCSDmatrix given in equation (1) can be
generated by incoherently summingmany realizations of the Ex andEy given in equation (16). Themeans and
covariances of bn and cn are zero and
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Likemethod1, the distributions of bn and cn are irrelevant as long as themeans are zero and the covariance
matrix equals equation (23). Again, Gaussian randomnumbers are a very convenient choice.
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3. Simulation

In this section, we simulate the generation of an electromagnetic DADPCSwithχ=−0.8, ( )p=a 0.2 exp j 4 ,
andκ=1 unit−1 using bothmethods derived in section 2. In thefield expressions formethods 1 and 2
[equations (7) and (16), respectively],κ (recall thatκ is related to the coherence width of the source) scales the
physical vector r. Therefore, the features of electromagnetic DADbeams shown in the results below are simply
magnified (or demagnified) by varyingκ.

Aswe show in the accompanyingMATLAB® simulation code, we used square computational grids thatwere
L=40 units inwidth and 512 points on a side. For bothmethods, we generated 50,000 stochastic field
realizations to compute the spectral densities ( ) ( ) ( )r r r r r= +S W W, ,xx yy and two-dimensional planar cuts
of the CSDmatrix ( )x xW , 0, , 01 2 . Prior scalarDAD sourcework showed that 50–60modes were sufficient to
accurately represent the PCS [3, 4]. To create high-fidelity stochastic fields, we used 121modes (n=−60,
−59,L, 60) in the expansions in equation (16).

Figure 1 shows stochastic electromagnetic DADfield realizations (magnitudes and phases ofEx andEy) for
bothmethods 1 and 2. Recall that formethod 1, aDAD stochastic vector component realization is the sumof
randomly tilted ‘forward’ [positive complex exponential in equation (7)] and ‘reverse’ [negative complex

Figure 1. Field realizations formethods 1 and 2 [equations (7) and (16), respectively]—(a)method 1 ∣ ∣Ex (top) and ( )Earg x (bottom),
(b)method 2 ∣ ∣Ex (top) and ( )Earg x (bottom), (c)method 1 ∣ ∣Ey (top) and ( )Earg y (bottom), and (d)method 2 ∣ ∣Ey (top) and ( )Earg y

(bottom).
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exponential in equation (7)] planewaves. Like the tilt (or direction), the amplitudes of the forward and reverse
planeswaves are also random.

Note that this is precisely the field that is shown infigures 1(a) and (c). The grating-like, or standing-wave
behaviors infigures 1(a) and (c) are due to the coherent addition (interference) of the forward and reverse plane
waves inEx andEy. The interference patterns inEx andEy are oriented in the same direction. This will always be
the case, as this is required to produce theCSDmatrix elements in equation (1); however, the ‘grating’ direction
will change from field realization tofield realization. Likewise, the amplitudes ofEx andEy, being random,will
change fromfield realization tofield realization.

Formethod 2, aDAD stochastic vector component realization is the sumof randomlyweightedDAD
coherentmodes, or equivalently, Bessel beams. It is the coherent sums of these randomlyweighted Bessel beams
that is responsible for the patterns infigures 1(b) and (d). The branch points (phase vortices) evident in the lower
images of figures 1(b) and (d) occur at points of perfect destructive interference (amplitude or intensity nulls).
These branch point locations andmore generally, the interference patterns themselves, will changewith the
randomweights [bn and cn in equation (16)] from field realization tofield realization.

Figures 2 and 3 shows the spectral density S andCSDmatrix ( )x xW , 0, , 01 2 results, respectively. In
figures 2(a), (b), and (c) show the theoretical,method 1, andmethod 2 S. All are plotted using the same color
scale defined by the color bar to the right offigure 2(c). Figure 2(d) shows the y=0 slices ( )S x, 0 through (a),
(b), and (c) on the same plot for comparison, and (e) shows the two-dimensional correlation coefficientsC for
themethods 1 and 2 S computed against S theory versus trial number. The inset infigure 2(e) showsC from trials
1,000–50,000.Cwas computed using

( [ ] ¯ )( [ ] ¯ )

( [ ] ¯ ) ( [ ] ¯ )
( )=

å - -

å - å -

=

= =

C
S k S S k S

S k S S k S
, 24k

N

k
N

k
N

1
sim sim thy thy

1
sim sim 2

1
thy thy 2

2

2 2

Figure 2. Spectral density S results—(a) theory, (b)method 1, (c)method 2, (d) y=0 slices through the theoretical,method 1, and
method 2 S, and (e) two-dimensional correlation coefficientsC formethods 1 and 2 S computed against S theory versus trial number.
The inset in (e) showsC from trials 1,000–50,000.
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whereN2=5122was the total number of pixels in an image, S̄ was the average value of the spectral density, and
kwas a discrete pixel index.

Figure 3 is organized like the 2×2CSDmatrix W. Each W ‘element’ consists of 6 images arranged in 2
rows and 3 columns and is labeled for the reader’s convenience. The theoretical,method 1, andmethod 2

( )x xW , 0, , 01 2 are shown in columns 1–3 of each element, respectively. Rows 1 and 2 show the real and
imaginary parts of W. The images in rows 1 and 2 are plotted on the same false color scales defined by the
respective color bars at rows’ end.

The agreement between theory and simulation for bothmethods is excellent. The results infigures 2 and 3
show that bothmethods produce an electromagnetic DAD sourcewith the proper shape and correlation
(coherence) properties, respectively. In addition,figure 2(e) shows that both approaches converge to the
theoretical, or desired source after integrating 500 stochastic field realizations.We note that electromagnetic
DADPCSs radiate diffraction-free beams and therefore, the shapes of the spectral density andCSDmatrix
elements pictured in figures 2 and 3 do not change upon propagation.

4. Conclusion

In this paper, we presented twomethods to produce an electromagnetic dark and antidark (DAD) partially
coherent source (PCS). Thefirst, extending a recently published scalarDADPCSmethod [10], represented the
field’s vector components, Ex andEy, as sums of randomlyweighted, randomly tilted planewaves. The second
expandedEx andEy in series of randomlyweightedDADcoherentmodes. By comparing the stochastic fields’
auto- and cross-correlations to the theoretical DAD source CSDmatrix, wewere able to generate realizations of
the randomweights using amultivariate Gaussian randomnumber generator.

We simulated the generation of an electromagnetic DAD source using bothmethods and validated our
analysis by comparing the simulated spectral densities andCSDmatrices to their theoretical counterparts. The
agreement between simulation and theorywas excellent. In addition, we found that both approaches converged
to the theoreticalmoments within 500 stochastic field realizations. Thisfindingwill be useful to thosewho
implement thesemethods for a specific application.

Figure 3. ( )x xW , 0, , 01 2 results—real (top) and imaginary (bottom) parts ofWxx (a) theory, (b)method 1, (c)method 2; real (top) and
imaginary (bottom) parts ofWxy (d) theory, (e)method 1, (f)method 2; real (top) and imaginary (bottom) parts ofWyx (g) theory, (h)
method 1, (i)method 2; and real (top) and imaginary (bottom) parts ofWyy (j) theory, (k)method 1, (l)method 2.
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Lastly, we note that bothmethods presented in this paper can be implemented on vector beamgenerators
that utilize one or two spatial lightmodulators [17–20]. Ourworkwillfind use in applications germane toDAD
beams, e.g. atomic optics and optical trapping.
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