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Abstract. A novel vibration experiment consisting of a free-free boundary condition, an electromagnetic excitation source, a
vacuum chamber, and a laser vibrometer based surface measurement system has been developed that permits high levels of
excitation on highly damped specimens with a minimal amount of unwanted systematic error. While some of the aspects of this
experiment are not unique, when combined with a processing technique that accounts for the nonlinearities present in the system,
this experiment permits, accurate measurement of strain dependent stiffness and damping properties of hard coatings at high strain
levels. This procedure has been demonstrated using a titanium beam that has been coated with a free-layer damping treatment of
Magnesium Aluminate Spinel. The results indicate that Magnesium Aluminate Spinel has both nonlinear stiffness and damping
properties. The stiffness asymptotes to a minimum value around 650 microstrain while the damping is a maximum around 100
microstrain. Additionally, the data contained herein cover a larger strain range for this material than previously reported.

Keywords: Nonlinear damping, nonlinear stiffness, free-free boundary condition, Hilbert Transform, hard coatings, magnesium
aluminate spinel

1. Introduction

High Cycle Fatigue (HCF) is a broad classification for a failure that occurs when a vibratory stress lower than
the elastic limit is applied to a structure over a large number of cycles and results in the failure of a component. In
turbine engines, vibratory stress is a function of the rotational frequencies of engine components, aeromechanical
loading, and the material properties of the components. In 1992, the USAF Scientific Advisory Board concluded
that High Cycle Fatigue (HCF) was the leading single cause of turbine engine failure. In an effort to prevent
high cycle fatigue of turbine engine blades, manufacturers have investigated several ways to reduce vibratory stress
and increase a component’s ability to withstand these stresses. Increasing the damping associated with a structure
can decrease stress amplitudes and provide extended life. While viscoelastic treatments such as constrained layer
dampers offer a significant amount of damping, they are not well suited for the hostile environment of a turbine
engine due to their strong temperature dependence. Alternatively, so called hard coatings have received attention in
recent years because they are relatively easy to apply, provide reasonable amounts of damping, and display reduced
dependence on temperature. Unfortunately, the stiffness and damping of materials in this class have been shown to
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Fig. 1. Beam support system.

have a nonlinear dependence on strain. For this and other reasons, it is often difficult to find reliable and repeatable
data that adequately captures the nonlinear, strain dependent nature of the stiffness and damping properties of hard
coatings.

2. Experimental method

The goal of this effort is to quantify the stiffness and damping of a nonlinear material. Because the material is a
sprayed on coating, it is not possible to test the response of monolithic specimens of the material. Therefore, the
material properties will be determined by comparing the response, specifically the instantaneous resonant frequency
and loss factor, of two systems, one with the coating and one without the coating in a manner similar to that offered
by Torvik [1]. Because the amount of damping contributed to a system by a hard coating can be rather small, it is
critical that the experimental procedure be designed in such a way as to accentuate the influence of the coating on
the system. In general this is accomplished by having an uncoated system with a constant resonant frequency and
extremely low baseline damping.

3. Setup

In order to ensure that the energy dissipation in the coated system was primarily due to the coating, it was decided
that the experiment be conducted in a vacuum chamber, thereby minimizing any damping associated with the beam
vibrating in a viscous medium. The vacuum chamber used in this study was capable of achieving pressures of 20 mm
Hg. Additionally, it was decided that a free-free boundary condition should be used, effectively eliminating energy
dissipation present in the clamps required to simulate a cantilevered or fixed boundary condition. The free-free
boundary condition was approximated by suspending the beam vertically from the upper node of the first mode using
fine gauge nylon string as seen in Fig. 1. A pair of nylon strings was also placed at the lower node of the beam to
minimize unwanted rigid body motion. By placing the support and guide wires at the nodal locations, they are held
relatively motionless and do not contribute to the dynamics of the system.

The free-free boundary condition complicates the excitation and measurement of the beam. Beam excitation is
achieved using a custom built, water cooled, electromagnet driven by a sinusoidal signal generated by a function
generator and amplified by an MB Dynamics SL600VCF Power Amplifier. This system was developed by Runyon
et al. [2]. The current from the amplifier produces an oscillating magnetic field around the electromagnet that creates
a couple on a pair of small permanent rare-earth magnets glued to the lower node of the beam specimen as shown in
Fig. 2. By placing the magnets at the lower node of the beam, the magnets do not undergo significant translations
and therefore do not enter into the dynamics of the beam. Beam excitation was measured using a single point Polytec
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Fig. 2. Electromagnetic excitation.
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Fig. 3. Overview of experimental setup.

OFV-303 Laser Doppler Vibrometer (LDV) capable of measuring velocities up to 10 m/s. The ability of the LDV
to measure velocities up to this limit is critical for capturing high strain data. The entire experimental setup can be
seen in Fig. 3.

3.1. Specimen description

Two beam specimens were cut from 1.59 mm thick Ti-6Al-4V sheet stock. The finished dimensions of both beams
was 19.0 mnmx 200 mmx 1.59 mm. The coated beam was coated on both faces over the center 36.5% of the beam
with 0.25 mm of Magnesium Aluminate Spinel as shown in Fig. 4. Because the material properties of the coating
material are known to depend on strain, it is necessary to minimize the amount of length-wise strain variation in the
coating.

3.2. Experimental procedure

It has been shown by a number of researchers [3-5] that hard coatings such as Magnesium Aluminate Spinel have
nonlinear material properties, that is, the stiffness and damping depend on the strain in the material. Therefore, the
experiment must be capable of capturing this behavior. While both frequency and time domain based experimental
techniques have been shown by Torvik and Patsias [4] to yield similar estimates of system loss factor for specimens
with weakly nonlinear material properties, a time domain approach has been pursued in this research. Frequency
domain techniques generally apply an excitation signal whose amplitude is controlled such that either the system
response or the amplitude of the excitation is held constant as the frequency of the excitation is swept through a given
range. For linear systems, this process only needs to be done for one level of system response. However, for systems
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Fig. 5. Free decay of a damped single degree of freedom system.

displaying amplitude dependent characteristics, the test must be conducted for several different response amplitudes
or excitation amplitudes in order to fully characterize the system. In contrast, a time domain based approach uses
the free decay of a system from a known state in order to find the stiffness and damping of the system. If the system
is linear, the entire decay will indicate constant values for the system stiffness and damping. However, if the system
is nonlinear, the single free decay signal will provide a continuously varying record of the system stiffness and
damping for all amplitudes thereby providing much more information with minimal experimentation.

3.3. Data processing

A typical time domain based experiment records the free response of a system to an initial condition as a function
of time and then uses the decay of the system to determine the damping present in the system. The most commonly
used technique is the log decrement method. Figure 5 shows the free response of a typical single degree of freedom
spring-mass-damper system that was released from an initial displacenient= 1 m, and an initial velocity,

% (0) = 0mis.
This system can be described with the following differential equation of motion.

mi+ct+kr=0 (1)
In general, the solution of this equation is

z(t) = Ae™ " cos (wat) (2)
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where A is the initial displacement, x(0)=A,is the damping ratiay is the undamped natural frequency ang is
the damped natural frequency. The log decremé&nis calculated using successive peaks on the decay, shown as
21 andzs in Fig. 5. These two peaks have amplitudes equal to:

zp = Ae ot 3)

xy = AewtHT) 4)
whereT = i—: The log decrement is found by taking the natural logarithm of the ratio of these two quantities,

—(wt
Aem ™ _py A

T U Ao ColttT) wT ®)

Because the damped and undamped natural frequencies [6] are related by

qu:w\/lfg~2 (6)

Equation (5) can also be written

2w 27 2w
A = _— = _— = _— 7
o (Z) C“<w T@) c( T@) ™
For values of, < 0.25, this expression can be approximated using Eq. (8).
A =27¢ (8)

Note that Eq. (7) is valid for all damping ratios while Eq. (8) is only valid for small damping ratios. This method is
extremely easy to use and provides a reasonable estimate of the damping presentin a system. For very lightly damped
systems, x1 and x2 are very similar which can lead to an unacceptable amount of uncertainty in the calculation of
the decrement. In these cases, it is customary to use two non-successive peaks. In this case, Eg. (5) can be written

—Cwt
Ao Py, A

T n Ao—CalitnT) — CwnT .

wheren refers to thenth peak. The implication is that regardless of whether successive or non-successive peaks
are used, the same damping ratio will be predicted. It is important to note, that this series of expressions was
derived assuming a linear viscous damping model and it is not strictly applicable to systems not displaying linear
viscous damping. Nonetheless, Runyon applied the log decrement method to a system displaying nonlinear energy
dissipation mechanisms using a sliding window approach [2,3]. In this study, a value for damping ratio,
calculated using. number of peaks and then a new damping ratio is evaluated using the next n number of peaks as
shown in Fig. 6. The result of this sort of technique is a plot that shows how the damping ratio changes over time or,
more importantly, how the damping ratio changes as a function of amplitude.

While then-peak log decrement method is straightforward and easy to implement, it is not without its faults. First,
it relies heavily on accurately identifying the exact peak of the oscillation. In practice, the continuous motion of the
system is discretized through the digital data acquisition process and the true peak is never precisely recorded. The
result is that there is an uncertainty associated with the decrement calculation. In order to minimize this uncertainty,
either the number of data points per cycle can be maximized thereby ensuring that the peak recorded value is closer
to the true peak or the number of peaks used can be increased which has the tendency to minimize the impact of
small measurement errors. Unfortunately, for a nonlinear system, using a large number of peaks to calculate the
decrement tends to smooth the data and mask the dependence of the decrement on amplitude. Another possibility is
to use some sort of curve fitting routine to find an analytical model of each peak and then differentiate that function
to find the maximum. However, the most convenient method is to apply the Hilbert Transform to the data.

The Hilbert Transform offers an alternate method to process time domain data. This method was first applied to
vibration problems in 1984 by Simon and Tomlinson [7]. Since that time, over 150 articles have been published
discussing the application of the Hilbert Transform to linear and non-linear vibration problems. The Hilbert
Transform [8] of a real valued function(t) is defined by the integral transform
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Fig. 6. Application of log decrement method to nonlinear damping.
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Hie () =3 (1) = - / ;B(—Tldr (10)
The integral in Eq. (10) must be considered as a Cauchy principal value to avoid the singularity @t By

taking the Hilbert transform of a set of real valued experimental data, an imaginary component is produced. The

real and imaginary components form an analytical sighial;) = « (t) + i (¢). Then by taking the modulus of the

analytical signal, as shown in Eq. (11), the instantaneous amplitude of the signal can be found as shown in Fig. 7.

The instantaneous amplitude is often referred to as the envelope of the signal.

A() =X (1) =z (1) + &) (11)

While a traditional peak finding method is useful, it only describes the decay of a signal by tracking the peaks of
the signal and discards the vast majority of the data. By taking the Hilbert Transform of asfignalth m number
of data points, the envelope oft), A(t) will be described by m number of points, thereby drastically reducing the
effect of an error in measurement of any one point. Now that the envelope has been found, the decrement can be
found. In this case, the decrement is formed from two points that are not peais btit rather adjacent points on
the A(t) curve, therefore the time constantigt) rather than the period of oscillation.
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X, XeSwt
A =In E =1In W
Now, because the damping ratig,and the loss factor, are related by) = 2¢ for small values of, Eq. (12) can
be rewritten

X1 7
A=In X, QwAt (13)
Solving for the loss factor yields
2A
= 14
T oA (14)

Note that the loss factoeta, is generally associated with a complex modulus approach where the modulus can
be writtenE* = E (1 + in) [9].

The Hilbert Transform also allows the determination of the instantaneous frequengy.ofFor linear systems,
this is not of great importance as the frequency will remain fixed and can be easily evaluated by identifying the
period of oscillation. For nonlinear systems, the frequency depends on the amplitude. In order to find the frequency,
the phase of the analytical signal(t), must first be found according to Eq. (15).

L (Z2()
@ (t) = tan (m (t)) (15)

Next the instantaneous circular frequencyt), can be found by taking the derivative of the phase with respect
to time. Recall that the circular frequency has units of rads/sec and is related to the frequency of osdifllation,
by w = 27 f. However, because numerical differentiation of a set of discrete points can lead to an excessively
noisy result, a cubic polynomial curvefit of the phase was performed. The resulting cubic polynomial was then
differentiated. Because the slope of the phase appears to be nearly constant, a cubic polynomial is able to sufficiently
capture the behavior of the phase.

The instantaneous circular frequency is an important quantity because it can be used to calculate the stiffness of
the system presuming the appropriate differential equation of motion is known. Since this experiment is concerned
with characterizing the behavior of a system comprised of nonlinear materials operating at high strain levels, both
geometric and material nonlinearities must be addressed. A study was conducted to assess the effect of the geometric
nonlinearities on a free-free beam vibrating at high amplitudes. Using the experimental procedures and equipment
described previously, the resonant frequency of a coated and a bare beam was plotted versus the strain amplitude
at the beam-coating interface. Figure 8 indicates that the system displays negligible geometric softening at high
strain amplitudes because the resonant frequency of the bare beam varies by only 0.16 Hz, or 0.07%, over the entire
strain range. By comparison, the resonant frequency of the coated beam systems varies by roughly 4.3 Hz, or
1.8%. It is assumed that the coated beam system would possess the same geometric nonlinearities as the uncoated
beam and an additional nonlinearity associated with the coating material. In a rough sense, the relative strengths
of the nonlinearities can be evaluated. These results suggest that the material nonlinearities are at least an order of
magnitude stronger than the geometric nonlinearities. For this reason, the following development will neglect the
geometric nonlinearities.

After determining the system resonant frequency and loss factor, it is important to reference these values to their
corresponding strain amplitude. The first step in finding the strain is the calculation of the displacement of the center
of the beam located aty using the velocity signal produced by the LDV and the resonant frequency as determined
previously as seen in Eq. (16).

v (o, t)

w (t) (16)

w(xo,t) =
In this equationy(z, t) andw(z, t) refer to the velocity and displacement in the z-direction shown in Fig. 4. The
second step is to determine the mode shape of the beam. If the coating fully covers the beam with a uniform thickness,
t., then it is likely that the mode shape for the coated beam is extremely close to that of an ideal Euler Bernoulli
beam and thus an analytical expression relating transverse displacermiento straingz(z, z) can be found [10].



704 SA. Reed et al. / An experimental technique for the evaluation of strain dependent material

240 T T T
Bare Beam
""" Coated Beam
235"
230
N
L.
S
225
220
215
0 100 200 300 400 500 600 700 800 900

¢ x108

Fig. 8. Frequency variation in bare beam.

However, if the beam is partially covered with the coating material as shown in Fig. 4, different methodology must
be employed.

Torvik [11] offers a method based upon analytical expressions that approximate the effect of the coating on the
mode shape. In the present study, a finite element based interpolation method, similar to that shown in [12], has
been developed. The finite element method will be used in an inverse fashion to first find the modulus of the
bare beamF}, then the modulus of the coating,., followed by the mode shap& (z), and strain distribution,

e(z), of the partially coated beam. The stiffness of the beam is related to the natural frequency of the beam. The
modulus of the bare beam is found by assuming the modulus of the beam, computing the first natural frequency
using finite element analysis, comparing this value to the experimentally measured resonant frequency, adjusting
the modulus of the beam, and rerunning the model. This process is repeated until a sufficient level of agreement
between the experimentally measured resonant frequency and the finite element model natural frequency is achieved.
This procedure is shown graphically in Fig. 9, that because the damping of a bare beam is extremely low, the
experimentally measured resonant frequency is indistinguishable from the undamped natural frequency of the finite
element model thus allowing these two quantities to be compared. Additionally, it should be noted that the finite
element method was used in this step so that the effect of the permanent magnets could be included in the analysis.
Were it not for the magnets, Euler Bernoulli beam theory would be sufficient to determine the modulus from the
resonant frequency.

The modulus of the coating is found in a similar fashion and some authors [12] recommend an identical method,
iteratively adjusting the coating modulus until the experimentally measured resonant frequency of the coated beam
matches the natural frequency predicted by finite element analysis. However, because the stiffness of the coating is
suspected to be nonlinearly dependent upon strain amplitude, the resonant frequency of the coated beam system must
be measured over a wide strain range. As will be detailed later, by calculating the instantaneous resonant frequency
from a free decay a tremendous amount of data can be generated thus making it quite expensive and tedious to follow
this iterative process. Instead, just a few finite element analyses are performed using a range of coating moduli and
the computed natural frequencies form the basis for a polynomial regression relating coating modulus to natural
frequency for a given set of beam and coating parameters. The resulting polynomial provides a quick and effective
way of determining coating modulus for any experimentally observed resonant frequency. It should be noted that if
ann-th order polynomial is desired, then+ 1 finite element analyses must be performed. This procedure is shown
graphically in Fig. 10.

Now that both the beam and coating moduli have been determined, the mode shape and displacement function
can be found. Because the coating modulus will change throughout the decay, the mode shape of the beam will
likewise change. In order to capture this evolution, the mode shape will be said to have both spatial dependence and
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a dependence on the strain since it is the strain amplitude that induces the change in the coating modulus. Therefore
the mode shape will be denoted &gz, Ec(c)). At any timet, the displacement functiomy(z, t), can be related
by a scaling factorA(¢) as seen in Eq. (17).

w(x,t)
X (z, Ec ()

In order to determine this scaling factor, the experimentally measured displacement at the center of the beam,
x = x,, Will be used. The magnitude of the mode shape at this location will be found using the Finite Element
Method. Because the mode shape of the coated beam depends on the coating modulus, which will be continually
changing throughout a decay, the magnitude of the mode shape-ak /2 corresponding ta + 1 values ofE .
will be extracted from the same models used to correlate frequency to coating modulus. Then, a polynomial will be
fit to the data to provide a continuous relationship between coating modulus and the magnitude of the mode shape
atz = L/2. This can be seen in Fig. 11. To reiterate, after experimentally measuring the coated beam resonant
frequency, the coating modulus is found using the polynomial regression shown in Fig. 10. Then after the coating
modulus is found, the magnitude of the mode shape-atL /2 is found using the polynomial regression shown in
Fig. 11. The result is a continuously varying value for the magnitude of the mode shapdatthe entire decay.
At this point, the scaling factoi(t), can be calculated using Eq. (17).

In accordance with the precedent set by Torvik [1,16] and Patsias [5], the peak strain along the interface between
the coating and the beam was used as the reference strain when reporting the material properties. Therefore, the

A(t) = (17)
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strain distribution along this surface will be extracted fromshe 1 finite element analyses previously performed.

Then, just as was done with the mode shape, a polynomial relating the maximum value of the strain distribution in
the coated region and the coating modulus was found. The strain values extracted from the finite element analyses,
£ (x), must be rescaled since they are dependent upon a normalized mode shape. The actudhkstreém be

found using the same scaling factor found in Eq. (17) because strain is linearly dependent on the curvature of the
displacement as seen in Eq. (18).

0w (z,t) 0?X (z,t)
ox? ox?
As stated, the goal of this experiment is to determine the material properties of a coating from the response of

two systems, one that includes the coating and one that does not. At this point, the dependence of two system

level properties, resonant frequency and loss factor, on strain has been determined. Through a finite element based
method, the coating modulus has been determined and associated with a particular reference strain. The final step is
to determine the loss factor of the coating.
In order to isolate the material loss factor of the coating, we utilize the definition of the system lossifagtor,
which is shown in Eq. (19) [1].
1 Dsys
Nsys = 20 Usys

where Dsys and Usys are the energy dissipated and stored in the system per cycle respectively. There are several

sources of energy dissipation in a system. In the case of a bare vibrating beam, these include the fixture or boundary

conditions ), the interaction of the specimen with the fluid surroundingit,§, and the internal friction present
in beam ;). Therefore the system damping can be represented by Eq. (20).

DsyS = Df + D, + Dy (20)

(a,ty,t) = A(D)E(2) =t =ty (1) (18)

(19)

Likewise, the stored energy in the system is a summation of the energy stored in thdhgamnd the boundary
(Uy). This can be represented by Eq. (21).
Usys =Ur + Uy (21)
Now substituting Eqgs (20) and (21) into Eq. (19), we arrive at the following expression for the system loss factor
for a bare beamyy, .
2 Ur + Uy

The addition of a damping treatment will introduce contributions to both the stored energy and the energy
dissipation. The system loss factor for a coated beam can be written

1 D} + Dy + Dy, + D
Msys = o Ul + U+ U
The primes in Eq. (23) are used to recognize that while these quantities also exist in Eq. (22), they may not be

identical due to the influence of the coating on the mode shape of the coated beam. Equation (23) can also be
rewritten

Mbare = (22)

(23)

1 D. 1 D} + Dy + D,
T T U UL+ U | 21 U+ UL+ U (@)
or
1 | S
e ¢ (25)

Nsys = o Trsu; U,
S b
If the bare beam system displays a linear loss factor, then it can be assumed that the loss factor of the bare beam,

Eq. (22), is negligibly different from the numerator of the second term in Eq. (24). In other words,
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Fig. 12. Polynomial relating strain energy to coating modulus.
1Df+Da+DbN 1D}+D;+DZ (26)
2 Up+ Uy 27 U}+Ué
Therefore, Eq. (22) can be substituted into Eq. (24) yielding Eq. (27).
D. Dy+Da+Dy
Dee = = — e 1 7TAG (27)
Vs = or U0y

U
L= +1 2m m +1
At this point, the loss factor of the material,,., and the loss factor of the bare beam can be utilized to simplify
Eq. (27).
TImat Tbare (28)

77$ys = U’ 7
+U Ue
e T == +1

Further simplification of Eq. (27) can be accomplished by assuming that the strain energy stored by the fixture,
Uy, is negligible. The denominators of Eq. (27) represent strain energy ratios. By defining the ratio of strain energy
in the coating to the strain energy in the beam,

Ue
_ 29
Rsk 07 (29)
we arrive at Eq. (30).
Nmat Nvare
sys = 30
sy RéE +1 Rsg+1 (30)

Equation (30) can then be rearranged to yield an expression for the loss factor of the coating material in terms of
the loss factors of the coated and uncoated systems and the strain energy ratio.

sYs R +]- - are
Nmat = ey ( SERSE) L (31)

If this system were linear, the strain energy ratio would be constant throughout the decay. However, that is not
the case and the variation of the strain energy ratio must be considered. In order to do this, the ratio of strain energy
stored in the beam versus the strain energy stored in the coating is extracted from thinite element analyses
performed previously. To reiterate, these n+1 finite element analyses are identical except that each one uses a slightly
different value of coating modulus. Then a polynomial relating coating modulus to strain energy ratio can be found
as shown graphically in Fig. 12. Finally, the strain energy ratio can be found throughout the entire decay using the
coating modulus values computed earlier.

In the end, the nonlinear coating modulus and loss factor have been extracted from the response of two beam
systems, one coated and one uncoated, as the beams decay from an initial condition. The steps required to do this
are listed below:

1. Measure the velocity of both beams during a decay using a laser Doppler vibrometer.
2. Apply the Hilbert Transform to find the complex part of the analytic signal.
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Fig. 13. Free decay of a bare beam.

w

Compute the modulus of the analytic signal to find the envelope curve. Apply smoothing techniques as
necessary to eliminate the presence of extraneous frequencies and noise.

Using the log decrement, find the loss factor of the two systems.

Compute the phase of the analytic signal.

Differentiate the phase with respect to time to find the instantaneous frequency of the two systems.

Use finite element analysis to find the modulus of the bare beam from the instantaneous frequency of the bare
beam.

Performn + 1 finite element analyses of coated beams comprisedtof different values of coating modulus.
Perform n-th order polynomial regressions relating coating modulus to the following quantities.

No o

© x

a. wvs. E..

b. E.vs.X(L/2).
C. E.vs.&(ty, L/2).
d. E, vs.Ué/Uc.

10. Calculate the following quantities throughout the decay.

E..
X(L/2).

~® Q0 TW
>
—~
~~
~

4. Results

The procedure has been applied to a Ti-6Al-4V beam measuring 19.8 0@ mmx 1.59 mm coated on both
sides with 0.25 mm of Magnesium Aluminate Spinel, a plasma sprayed coating originally used as a thermal barrier
coating. The coating density was determined, using simple weights and measures, to be 2565 kg/m

The beams were placed in a vacuum chamber operating at room temperature and a pressure of 20 mmHg. The
beams were excited to a maximum response level by driving the electromagnet at the resonant frequency of the
beams. Once the steady state maximum response was established, the excitation was interrupted using a feature
of the wave form generator that allows the output signal to be cut abruptly. Figure 13 shows the free decay of the
bare beam. The Hilbert command available in the signal processing toolbox of MATLAB was used to compute the
analytical signal and thus the envelope of the velocity), as shown in Fig. 14. Also shown in Fig. 14 are the results
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Fig. 15. Variation of coating modulus vs natural frequency.

of a MATLAB cubic smoothing spline routine, csaps, which has been applied to the envelope of a velocity signal.
The cubic smoothing spline routine was necessary to smooth the effects of the noise and extraneous frequencies
present in the envelope function. The extraneous frequencies have been traced to the rigid body modes associated
with the simulated free-free boundary condition. This was done by visually identifying the rigid body frequencies
and confirming their presence in the frequency response function.

The methods described in the previous sections were applied to determine the material properties of the coating.
Six different coating moduli were used to generate the polynomials needed to relate natural frequency and mode
shape to coating modulus. The coating moduli were chosen such that they fully span the range of coating modulus
likely to be seen in the experiment. This is important so that the polynomial regressions are not used beyond their
valid range. The polynomial regressions were performed using the polyfit command available in MATLAB while
the commercial finite element program ANSYS was used to perform the modal analysis of the bare and coated
beams. Figures 15 and 16 show six data points corresponding to six FEM analyses performed using different coating
moduli. These two plots are representative of the types of regressions performed. It can be seen that the decays fully
encompass the experimental data and that the relationships are nearly linear.

Figure 17 illustrates how the modulus of the coating varies with strain. Clearly, the modulus of the coating displays
a softening material nonlinearity with a minimum value at a peak interface strain of 600 microstrain. Note that the
peak interface strain is merely a reference. The actual strain in the coating can be up to 10% less than interface
strain in the lengthwise direction and up to 13% greater on the outer fiber of the coating. In reference [13] Torvik
reports the modulus for Magnesium Spinel to be around 42 GPa which falls in the center of the range of moduli
computed using this method. It is important to note that this appears to be the only study that quantifies the stiffness
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Fig. 17. Modulus of Magnesium Aluminate Spinel.

of this material. Interestingly, it also appears that the strength of the nonlinearity diminishes as the reference strain
increases.

Figure 18 illustrates the loss factay,, for Magnesium Aluminate Spinel. While the magnitudes of the material
loss factor are consistent with results from other studies [5,14,15], they display a trend not previously seen in the
literature for this material. Several studies [5,15,16] show the loss factor of the coating increasing with strain and
then leveling off. The data present in this study indicate a decrease of nearly 30% after reaching a maximum value
near 250 microstrain. Additionally, one of the more important aspects of this work is that the peak strain range
achieved was roughly 33% greater than all other studies of this material [5,15,16].

There are numerous potential explanations for the differences in the trends. The first could be attributed to the
testing methodology employed. Torvik acknowledges that experiments performed on a different coating of a similar
nature were effected by whether the tests were conducted with increasing or decreasing levels of excitation [12,15].
Since these experiments were conducted using a free decay, the amplitude started high and decreased. If a forced
response test were performed using a progressively higher level of excitation, the trend may have been different.
Similarly, the particular coated specimen used for this work had already been subjected to several million cycles at
fairly high strain level. The reason for this was that it was observed that the frequency and amplitude of the resonant
response drifted by 10—-20% over as the number of cycles accumulated on the specimen. The results shown here are
for a specimen that displayed a stabilized resonant response. Additionally, it has been suggested that the properties
of the material exhibit short term memory effects. For instance, Patsias [12] has indicated that the material properties
are somewhat dependent on the initial level of excitation. Many of these concerns will be addressed and documented
in subsequent publications.
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Fig. 18. Loss Factor of Magnesium Aluminate Spinel.

A final word must be said regarding the general method of differencing the response of coated and uncoated
systems and then deducing the properties of the coating. Theoretically, there should be no problem with this
approach. In practice though, the presence of the coating is not the only difference between the two systems. The
two beams may have slight differences in geometry and/or material properties, for instance one may be longer than
the other, or one may have a higher stiffness than the other. These differences were minimized by cutting each of
the specimens from a common sheet of titanium, ensuring that each specimen was oriented with the grain of the
sheet, and by cutting the sheet to the correct length before cutting strips off of the sheet to form the beams. So in this
respect, the beams are as identical as can be expected. Other possible differences in the specimens occur at the upper
support point where a thin string is fed through a small tube attached to the upper node of the beams and at the lower
node where the permanent magnets are glued. The likely imperfections introduced at these locations could be from
mislocation of the nodes, application of different amounts of glue, or using non-identical magnets. Fortunately, since
differences occur at or near the nodes, the effect of these differences on the dynamics of the systems is negligible.

5. Conclusions

The method presented appropriately considers the material nonlinearities present and accurately captures the
dependence of the stiffness and damping on a reference strain. This is accomplished using FEM based curvefits of
the behavior of a coated beam and the experimentally measured system level properties of a coated and an uncoated
beam. The results from this test are consistent with previous data sets and expand the knowledge of the behavior of
these materials because these tests were performed over a wider strain range and used techniques that enabled a near
continuous strain dependency to be found.
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