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a b s t r a c t

A new type of Schell-model source is developed that has a spectral degree of coherence, or spatial power spectrum,
which is described by a power-law function. These power-law sources generally produce cusped, or peaked
far-zone spectral density patterns making them potentially useful in directed energy applications. The spectral
degrees of coherence, spatial power spectra, and spatial coherence radii for power-law sources are derived and
discussed. Two power-law sources are then synthesized in the laboratory using a liquid crystal spatial light
modulator. The experimental spectral densities are compared to the corresponding theoretical predictions to
serve as a proof of concept.

Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Much work has been performed designing partially coherent sources
which behave in novel and exploitable ways. The literature is replete
with sources that produce ring-shaped, frame-like, and cusped intensity
(in the space-frequency domain, spectral density) patterns [1–3]. In
addition, partially coherent sources which ‘‘self steer,’’ ‘‘self split,’’
and ‘‘rotate’’ have also been developed [4–6]. The interested reader is
referred to [7–11] for excellent books and reviews on the subject.

In this paper, a new class of partially coherent source is introduced
and synthesized. These, so called power-law sources, possess spatial
coherence functions which have, or produce spectral densities with, 𝜌−𝛼
dependence. These sources, like the sources in [3], can produce cusped
spectral densities making them potentially useful in laser manufactur-
ing, free-space optical communications, directed energy, et cetera. In
addition, since many natural processes are well described by power-
law formulas, these sources could potentially serve as simple models of
light’s interaction with power-law phenomena.

In the next section, power-law sources are analytically developed.
Expressions for the spectral degrees of coherence 𝜇, spatial power
spectra, and spatial coherence radii 𝛿 are derived and discussed. In
addition, the asymptotic behaviors of 𝜇 and 𝛿 as the power 𝛼 → ∞ are
also determined. Lastly, in Section 3, power-law sources are physically
realized in the laboratory. The experimental far-zone spectral densities
𝑆 are compared to the theoretical 𝑆 (also derived in Section 2) to
validate the analysis.

E-mail address: milo.hyde@afit.edu.
1 The views expressed in this paper are those of the authors and do not reflect the official policy or position of the U.S. Air Force, the Department of Defense, or the U.S. Government.

2. Theory

From the work of Gori and Santarsiero [12], the sufficient condition
for a genuine cross-spectral density function 𝑊 is

𝑊
(

𝝆1,𝝆2
)

= ∬

∞

−∞
𝑝 (v)𝐻

(

𝝆1, v
)

𝐻∗ (𝝆2, v
)

d2𝑣, (1)

where 𝝆 = x̂𝑥 + ŷ𝑦, 𝐻 is an arbitrary kernel, and 𝑝 is a non-negative
function. The dependence of the functions in (1) on radian frequency
𝜔 has been omitted for brevity. Letting 𝐻 (𝝆, v) = 𝜏 (𝝆) exp (−j2𝜋𝝆 ⋅ v),
where 𝜏 is a complex function, simplifies (1) to

𝑊
(

𝝆1,𝝆2
)

= 𝜏
(

𝝆1
)

𝜏∗
(

𝝆2
)

∬

∞

−∞
𝑝 (v) exp

[

−j2𝜋
(

𝝆1 − 𝝆2
)

⋅ v
]

d2𝑣. (2)

If the Fourier transform of 𝑝 exists, then (2) describes a Schell-model
source [7,8,13] with 𝜇 equal to

𝜇 (𝚫𝝆) = ∬

∞

−∞
𝑝 (v) exp (−j2𝜋𝚫𝝆 ⋅ v)d2𝑣, (3)

where 𝚫𝝆 = 𝝆1 − 𝝆2. Eq. (3) is the spatial-domain form of the Wiener–
Khinchin theorem [7,13]; thus, 𝑝 is the spatial power spectrum of the
random source. Assuming that 𝜇 (and subsequently 𝑝) is rotationally
invariant transforms (3) into a Fourier–Bessel integral, viz.,

𝜇 (𝜌) = 2𝜋 ∫

∞

0
𝑣𝑝 (𝑣) 𝐽0 (2𝜋𝑣𝜌)d𝑣

𝑝 (𝑣) = 2𝜋 ∫

∞

0
𝜌𝜇 (𝜌) 𝐽0 (2𝜋𝑣𝜌)d𝜌,

(4)

where 𝐽0 is a zeroth-order Bessel function of the first kind and 𝜌 = |𝜟𝝆|
has been introduced for notational convenience.
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2.1. Power-law 𝜇 sources

Inspired by the von Kármán atmospheric turbulence power spec-
trum [14], let 𝜇 be

𝜇 (𝜌) =
𝜌2𝛼𝑐

(

𝜌2 + 𝜌2𝑐
)𝛼 , (5)

where 𝛼 > 1 and 𝜌𝑐 > 0 is related to the spatial coherence radius of the
source (discussed further in Section 2.3). Substituting (5) into (4) and
evaluating the integral yields

𝑝 (𝑣) =
2𝜋𝜌2𝑐

2𝛼−1𝛤 (𝛼)
(

2𝜋𝜌𝑐𝑣
)𝛼−1𝐾𝛼−1

(

2𝜋𝜌𝑐𝑣
)

, (6)

where 𝛤 is the Gamma function and 𝐾 is a modified Bessel function of
the second kind [15].

2.2. Power-law 𝑝 sources

A source with a power-law spatial power spectrum can be derived
by exploiting the symmetry of the Fourier–Bessel transform in (4). Let
𝜇 be

𝜇 (𝜌) = 22−𝛼
𝛤 (𝛼 − 1)

(

𝜌
𝜌𝑐

)𝛼−1
𝐾𝛼−1

(

𝜌
𝜌𝑐

)

. (7)

Substituting (7) into (4) and evaluating the integral produces [15,16]

𝑝 (𝑣) =
4𝜋 (𝛼 − 1) 𝜌2𝑐

[

1 +
(

2𝜋𝜌𝑐𝑣
)2
]𝛼 . (8)

2.3. Spatial coherence radii

The spatial coherence radii 𝛿 can be found by evaluating

𝐴𝑐 ≈ 𝜋𝛿2 = ∬

∞

−∞
|𝜇 (𝝆)|2d2𝜌, (9)

where 𝐴𝑐 is the coherence area [13]. Substituting (5) into (9), evaluating
the integral, and solving for 𝛿 yields

𝛿 =
𝜌𝑐

√

2𝛼 − 1
. (10)

The value of 𝜇 at 𝛿 can be found by substituting (10) into (5) and
simplifying:

𝜇 (𝛿) =
(

1 − 1
2𝛼

)𝛼
. (11)

For power-law 𝑝 sources, evaluating (9) directly is difficult. However,
one can exploit Parseval’s theorem [13] and arrive at a relation for 𝛿
much more easily, viz.,

𝛿 =

√

1
𝜋 ∬

∞

−∞
|𝑝 (v)|2d2𝑣 =

2 (𝛼 − 1)
√

2𝛼 − 1
𝜌𝑐 . (12)

The value of 𝜇 at 𝛿 is

𝜇 (𝛿) = 22−𝛼
𝛤 (𝛼 − 1)

(

2 𝛼 − 1
√

2𝛼 − 1

)𝛼−1

𝐾𝛼−1

(

2 𝛼 − 1
√

2𝛼 − 1

)

. (13)

Clearly, from (10) and (12), the spatial coherence radii change with
the power 𝛼. It would be preferable if 𝛿 had the same physical meaning
regardless of 𝛼. This can be achieved by expressing 𝜇 and 𝑝 in terms of

Fig. 1. (a) 𝜇 (𝛿) versus 𝛼 for the power-law 𝜇 and power-law 𝑝 sources and (b) log of the
sum of squared difference log10 (Δ) versus 𝛼 for the two 𝜇 given in (14).

𝛿 instead of 𝜌𝑐 :

𝜇 (𝜌) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

𝛿2 (2𝛼 − 1)
𝜌2 + 𝛿2 (2𝛼 − 1)

]𝛼

22−𝛼
𝛤 (𝛼 − 1)

(

2 𝛼 − 1
√

2𝛼 − 1

𝜌
𝛿

)𝛼−1

𝐾𝛼−1

(

2 𝛼 − 1
√

2𝛼 − 1

𝜌
𝛿

)

𝑝 (𝑣) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2𝜋 (2𝛼 − 1) 𝛿2

2𝛼−1𝛤 (𝛼)

(

2𝜋𝑣𝛿
√

2𝛼 − 1
)𝛼−1

𝐾𝛼−1

(

2𝜋𝑣𝛿
√

2𝛼 − 1
)

𝜋 (2𝛼 − 1) (𝛼 − 1)𝛼−1𝛿2
[

(𝛼 − 1)2 + 𝜋2 (2𝛼 − 1) 𝛿2𝑣2
]𝛼 .

(14)

The asymptotic behaviors of 𝛿 as 𝛼 → ∞ are quite clear from (10) and
(12), i.e., 0 and ∞, respectively. Interestingly, the behaviors of 𝜇 (𝛿) as
𝛼 → ∞ are equal for both the power-law 𝜇 and power-law 𝑝 sources—
both are exp (−1∕2) ≈ 0.6065. Fig. 1(a) shows 𝜇 (𝛿) versus 𝛼 for both
sources. The black dashed line is the asymptotic value exp (−1∕2). For
𝛼 > 4, the 𝜇 (𝛿) are practically identical. As might be expected from these
results, the corresponding 𝜇 (and consequently the 𝑝) given in (14) are
also very similar for 𝛼 > 4. This is verified in Fig. 1(b) which shows the
sum of squared difference Δ for the two 𝜇 in (14), i.e.,

Δ (𝛼) = ∫

∞

0
|

|

𝜇1 (𝜌, 𝛼) − 𝜇2 (𝜌, 𝛼)||
2d𝜌 (15)

versus 𝛼. The physical significance of this is discussed in the next section.

2.4. Propagation behavior

The behavior of a power-law Schell-model source after propagating
a distance 𝑧 can be found by evaluating

𝑊
(

𝝆1,𝝆2, 𝑧
)

=
exp

[

j𝑘
2𝑧

(

𝜌21 − 𝜌22
)

]

𝜆2𝑧2 ⨌

∞

−∞
𝜏
(

𝝆′
1
)

𝜏∗
(

𝝆′
2
)

𝜇
(

𝝆′
1 − 𝝆′

2
)

× exp
[

j𝑘
2𝑧

(

𝜌21
′ − 𝜌22

′)
]

× exp
[

−
j𝑘
𝑧
(

𝝆1 ⋅ 𝝆′
1 − 𝝆2 ⋅ 𝝆′

2
)

]

d2𝜌′1d
2𝜌′2,

(16)

where 𝑘 = 2𝜋∕𝜆, 𝜆 is the wavelength, and 𝜇 is given in (14). Considerable
progress can be made by assuming that

𝜏 (𝝆) = exp
(

−
𝜌2

4𝜎2

)

(17)
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Fig. 2. Power-law 𝜇 source spectral densities 𝑆 versus Fresnel number 𝑁𝐹 —(a) 𝑁𝐹 = ∞,
(b) 𝑁𝐹 = 20, (c) 𝑁𝐹 = 10, (d) 𝑁𝐹 = 5, (e) 𝑁𝐹 = 2.5, (f) 𝑁𝐹 = 1, (g) 𝑁𝐹 = 0.5, and (h)
𝑁𝐹 = 0.1. The blue traces are the 𝑆 found by computing (18) numerically. The red traces
in (f), (g), and (h) are the approximate far-zone 𝑆 given by (20). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

and by restricting the analysis to the behavior of the spectral density
𝑆 [7,8,13] versus 𝑧. Substituting (17) into (16), setting 𝝆1 = 𝝆2 = 𝝆,
and carrying out the tedious but relatively straightforward mathematics
yields

𝑆 (𝝆, 𝑧) = 𝑊 (𝝆,𝝆, 𝑧)

= 𝑘2𝜎2

𝑧2 ∫

∞

0
𝜌′𝜇

(

𝜌′
)

exp
[

−
(

1
8𝜎2

+ 𝑘2𝜎2

2𝑧2

)

𝜌′2
]

× 𝐽0
(𝑘
𝑧
𝜌𝜌′

)

d𝜌′.

(18)

The remaining integral (a Fourier–Bessel integral) must be computed
numerically.

2.4.1. Approximate far-zone behavior
An approximate expression for the far-zone power-law source 𝑊

can be found by assuming that 𝜇 is much narrower than the spectral
density 𝑆. Under this condition, the source is a quasi-homogeneous
source [7,8,13] and the generalized Van Cittert–Zernike theorem [13]
can be used to predict the far-zone 𝑊 :

𝑊
(

𝝆1,𝝆2, 𝑧
)

≈
exp

[

j𝑘
2𝑧

(

𝜌21 − 𝜌22
)

]

𝜆2𝑧2
𝑆̃
(𝝆1 − 𝝆2

𝜆𝑧

)

𝑝
(

𝝆1 + 𝝆2
2𝜆𝑧

)

, (19)

where 𝑆̃ is the Fourier transform of 𝑆. The far-zone spectral density can
be found quite easily from (19), i.e.,

𝑆 (𝝆, 𝑧) = 1
𝜆2𝑧2

𝑆̃ (0) 𝑝
( 𝝆
𝜆𝑧

)

. (20)

Eq. (20) is used in Section 3 to validate the experimental results. Recall
that the 𝑝 given in (14) are very similar for 𝛼 > 4; thus, under this
condition, both power-law sources produce similar far-zone 𝑆.

Fig. 3. Power-law 𝑝 source spectral densities 𝑆 versus Fresnel number 𝑁𝐹 —(a) 𝑁𝐹 = ∞,
(b) 𝑁𝐹 = 20, (c) 𝑁𝐹 = 10, (d) 𝑁𝐹 = 5, (e) 𝑁𝐹 = 2.5, (f) 𝑁𝐹 = 1, (g) 𝑁𝐹 = 0.5, and (h)
𝑁𝐹 = 0.1. The blue traces are the 𝑆 found by computing (18) numerically. The red traces
in (f), (g), and (h) are the approximate far-zone 𝑆 given by (20). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of
this article.)

Figs. 2 and 3 show the power-law 𝜇 and power-law p S versus Fresnel
number 𝑁𝐹 , respectively. Here, 𝑁𝐹 = 𝑟2∕ (𝜆𝑧) [17], where 𝑟 = 2𝜎,
𝜎 = 1 mm, and 𝜆 = 1 μm. Additionally, 𝛿 = 𝜎∕10 = 0.1 mm and 𝛼 = 1.25.
The blue traces are the 𝑆 found by computing (18) numerically; the
red traces in (f), (g), and (h) are the approximate far-zone 𝑆 given by
(20). As expected, (20) is a very good approximation to (18) for small
Fresnel numbers. Note that both sources produce cusped 𝑆 in the far
zone—exploitable, in practice, using a lens.

3. Experiment

3.1. Set-up

In this section, experimental results of power-law sources with 𝜇
given in (14) are presented. A schematic of the experimental set-up
used to synthesize the sources is presented in Fig. 4. Light from a
632.8 nm helium–neon (HeNe) laser is expanded 20× before passing
through a half-wave plate (HWP) and linear polarizer (LP). The HWP–LP
combination serves to align the linearly polarized light exiting the laser
with the control state of the spatial light modulator (SLM) – vertical in
this case – and to control light power.

After passing through the HWP–LP, the light is incident on the SLM.
The SLM used here is a Meadowlark Optics P512 which has a 512 × 512
liquid crystal pixel array with a 15 μm pitch. The light reflected from
the SLM is diffracted into multiple orders. Partially coherent source
instances are produced in the first diffraction order; thus, a spatial filter
[composed of a 400 mm lens, an iris, and a 100 mm lens (L2)] is used
to remove all orders other than desired first order.

Lastly, the random intensities are recorded by a camera located
40 cm beyond the focus of L2. The camera used here is a Lumenera
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Fig. 4. Schematic of the experimental set-up. The abbreviations used in the figure are helium–neon (HeNe), beam expander (BE), half-wave plate (HWP), linear polarizer (LP), mirror
(M), spatial light modulator (SLM), 400 mm lens (L1), iris (I), 100 mm lens (L2), and camera (C).

Fig. 5. Example SLM command for generating a single instance of a power-law 𝜇 source.
The phase command depicted in the figure is in waves.

Lw135RM which has a 1392 × 1040 detector array with a 4.65 μm
pitch. In addition to producing random field instances, the SLM also
applies a 40 cm focus so that the intensities measured by the camera
are, equivalently, the far-zone intensities.

3.2. Power-law sources & data processing

The power-law 𝜇 and power-law 𝑝 sources both had Gaussian-shaped
𝜏 [see (17)], where 𝜎 = 1 mm. The 𝛿 and 𝛼 for both sources were
𝛿 = 0.1 mm and 𝛼 = 1.5. The modified phase screen technique was
used to synthesize power-law source realizations [18–20]. An example
SLM command for generating a single instance of a power-law 𝜇 source
is shown in Fig. 5. A detailed description of the screen (SLM command)
synthesis process, including an illustration depicting the process, can be
found in [20].

The experimental 𝑆 were formed by averaging 5,000 measured
intensities. The camera continuously collected 66 ms exposures until
the sequence of 5,000 random field instances was completed. The data
collect for each power-law source took approximately 225 s. The raw
experimental 𝑆 were then centered for ease of comparison with the
theoretical 𝑆 derived from (20):

𝑆 (𝝆, 𝑧) = 2𝜋𝜎2

𝜆2𝑧2
𝑝
( 𝝆
𝜆𝑧

)

, (21)

where 𝑝 are given in (14).

3.3. Results

Figs. 6 and 7 shows the results for the power-law 𝜇 and power-
law 𝑝 sources, respectively. The layout of both figures is the same:
(a) shows the theoretical spectral density 𝑆 [see (21)], (b) shows the
experimental 𝑆, and (c) shows the 𝑦 = 0 slice of the theoretical and
experimental normalized 𝑆. The experimental and theoretical 𝑆 are in
excellent agreement. Upon close inspection of Figs. 6(b) and 7(b), a cross

Fig. 6. Power-law 𝜇 source results—(a) theoretical 𝑆, (b) experimental 𝑆, and (c) 𝑦 = 0
slice of theoretical and experimental normalized 𝑆.

Fig. 7. Power-law 𝑝 source results—(a) theoretical 𝑆, (b) experimental 𝑆, and (c) 𝑦 = 0
slice of theoretical and experimental normalized 𝑆.

or star shape is discernable around the origin in both figures. These are
very minor experimental errors and likely caused by the spatial and
phase discretization of the SLM.
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4. Conclusion

In this paper, Schell-model sources which possessed power-law spec-
tral degrees of coherence 𝜇 and spatial power spectra 𝑝 were developed.
It was shown that these power-law sources can produce cusped, or
peaked spectral densities 𝑆 making them potentially useful in laser
manufacturing or directed energy applications. Expressions for 𝜇, 𝑝, and
the spatial coherence radii were derived and discussed. Their asymptotic
behaviors as the power 𝛼 → ∞ were also investigated. Lastly, power-law
𝜇 and power-law 𝑝 sources were physically realized in the laboratory
using an SLM. The experimental 𝑆 were compared to the corresponding
theoretical 𝑆 and found to be in excellent agreement.
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