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a b s t r a c t

As Computer Vision (CV) techniques develop, pan/tilt camera systems are able to enhance
data capture capabilities over static camera systems. In order for these systems to be effec-
tive for metrology purposes, they will need to respond to the test article in real-time with a
minimum of additional uncertainty. A methodology is presented here for obtaining high-
resolution, high frame-rate images, of objects traveling at speeds P1.2 m/s at 1 m from
the camera by tracking the moving texture of an object. Strong corners are determined
and used as flow points using implementations on a graphic processing unit (GPU), result-
ing in significant speed-up over central processing units (CPU). Based on directed pan/tilt
motion, a pixel-to-pixel relationship is used to estimate whether optical flow points fit
background motion, dynamic motion or noise. To smooth variation, a two-dimensional
position and velocity vector is used with a Kalman filter to predict the next required posi-
tion of the camera so the object stays centered in the image. High resolution images can be
stored by a parallel process resulting in a high frame rate procession of images for post-
processing. The results provide real-time tracking on a portable system using a pan/tilt unit
for generic moving targets where no training is required and camera motion is observed
from high accuracy encoders opposed to image correlation.

� 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

1.1. Motivation

The Unmanned Aircraft System (UAS) flight plan
describes Nano/Micro UAS as ‘‘aircraft capable of conduct-
ing a variety of indoor and outdoor reconnaissance sensing
missions’’ [1]. Developing aircraft capable of these activi-
ties requires an in-depth understanding of biological

counterparts and measurement systems capable of captur-
ing in-flight dynamics. In order to gain this type of under-
standing for biomimetics advancement, measurement
systems require the ability to measure the motion of flying
organisms in an unconstrained, real-time manner.

The Air Force Institute of Technology and the Air Force
Research Laboratory have worked on advancing flapping
wing mechanisms through flight control research, wing de-
sign and analysis of dynamics [2–4]. There are many other
facilities devoted to developing and understanding the
mechanics of flapping wing flight. A sample includes: the
Harvard Microrobotics Lab [5], the Korean Advanced Insti-
tute of Science and Technology (KAIST) Smart Systems and
Structures Lab [6], and Georgia Institute of Technology’s
Intelligent Control Systems Laboratory [7]. Due to the
small scale and speed involved with these vehicles, novel
systems have been needed to measure forces and motion
without disrupting flight.
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Contact measurement methods pose many challenges
when working with UASs. These methods consist of, but
are not limited to, using strain gages, paint, retro-reflective
markers, etc. which typically alter vehicle performance
either by weight or other restrictions to an already light-
weight device (typically �15 gm). The alternative ap-
proach is using non-contact measurement methods for
observing the UAS’s behavior without disrupting it. Cur-
rent non-contact displacement measurement methods in-
clude laser vibrometry, laser range finders, capacitance
measurement, interferometry and photo/videogrammetry.
Laser vibrometry is the preferred method for measuring
non-contact vibrations [8]. However, only a single point
is measured at a time, and alignment must be maintained
through the test. Videogrammetry uses multiple, synchro-
nized images or stereo pairs and typically retro-reflective
markers or projected targets for determining surface
shapes and can capture shape and motion from a single
test [4]. Projected targets are not practical for use with
moving targets, and adding retro-reflective markers ne-
gates non-contact measurement. Using a camera allows
for more freedom of movement. However, the subject must
stay in the field-of-views (FOVs) with little to no occlusion.
Incorporating a pan/tilt camera with real-time tracking
will allow for the camera to move so that the object re-
mains in the FOV. This will expand the effective capture
volume without a sacrifice in resolution of the object, for
better flight data over a larger set of flight profiles. The
ideal system would have a fast response (high frame rate
and low latency allows for faster vehicles), high resolution
(for better discrimination of the vehicle) and work with
general dynamic objects (not require selection or training).

1.2. Related work

Surveillance and robotics have driven development of
computer vision (CV) tools. The CV tools related to this
work involve camera motion compensation, object detec-
tion, and object tracking. Features discriminate a point
from others, such as differences in color or intensity gradi-
ents. Different methods can be employed to detect specific
features or objects in the scene; such as point detection,
background modeling, image segmentation or classifiers
based on supervised learning. Tracking can be done by
matching points, or objects can be tracked as a whole by
employing silhouettes or kernels. See Yilmaz et al. [9] for
a detailed survey on object tracking.

The system presented here pulls existing methods in a
novel combination for general purpose. It uses known
camera motion with exact pixel displacement, corner
detection and optical flow tracking. Image processing is
performed on the graphics processing unit (GPU) for faster
speed. The resulting system is able to track a single moving
object using a single camera.

Camera motion can either be undesired, requiring image
stabilization [10], or desired, such as for tracking or build-
ing a background mosaic [11]. The principle involved is
the same: finding the transform from an image to a refer-
ence image [12]. Transforms are typically found between
frames by fitting or matching point correspondences [13],
phase correlation [14] or block matching [15]. An alternate

technique is to use a projective texture as a Ref. [12]. The
use of the known camera motion is surprisingly not used
more often. Though the exact model is developed [16], of-
ten simplified models are used, such as the small angle
approximation [17]. Algorithms that do not require known
camera motion have the advantage that they can be used
with hand-controlled cameras or other moving mounts.
However, estimating motion comes at the cost of increased
error, increased processing time, the object appearing
smaller in the image (because the background must be
viewed) and requiring texture, or the lack of texture, on
the background and foreground. This work uses the exact
model based on encoder positions for high accuracy predic-
tions, even with large displacements (�1/7th of the image).

An alternative to compensating for tracking the cam-
era’s motion is to use one or more static cameras to direct
the moving camera. This has the advantage that moving
objects are simpler to detect with a static camera. Applica-
tions include controlling a remote vehicle [18,19] or fol-
lowing sporting events [20]. For this alternative to be
effective, the FOV must cover the range of the moving cam-
era, increasing setup time and calibration. However, sta-
tionary, smart cameras can be used to self-calibrate with
fast setup and reasonable accuracy [21]. The work pre-
sented here uses a single pan/tilt camera to track a moving
object.

As processing power has developed, new and existing
tools have been applied in real-time, and have been used
for both tracking an object within a static camera’s view
or tracking an object with a moving camera.

Heuristics can be used to design detectors for increased
accuracy or speed. General purpose feature descriptors can
be used with training data, tuning or selection for a wide
variety of objects. Some specific applications using a pan/
tilt camera include tracking the color on a ball [22,23], hu-
man positioning/tracking [24–26], faces [23,26,27], and
moving vehicles/ships [13,27–29]. Various methods are
used in these applications for detecting objects such as
mean shift and its variant continuously adaptive mean
shift (CAMShift) [22,25,26,28,29], background modeling
using a Gaussian mixture model (GMM) [25,29], skin color
segmentation [23], training/learning an object’s appear-
ance using principle component analysis (PCA) and sum
of squared difference (SSD) [27], and template-based
detection using speeded up robust features (SURF) [13].
The general purpose methods often require selection, a
pre-defined capture area (i.e., alert zone), training, and/or
tuning. The cost of using application specific algorithms in-
clude decreased system versatility, increased setup/cali-
bration time, and limitations on feature changes such as
illumination, object pose, shape, and size.

Features can also be non-specific, such as motion-based
features, which are useful in general purpose applications.
General purpose (motion-based) tracking allows for more
flexibility in handling multi-purpose problems and allows
tracking of an object of any size or shape [17]. This is
well-suited for a metrology system capable of tracking a
multitude of objects without having the concern of train-
ing, or changes in illumination or appearance associated
with application specific methods. Short duration/sudden
events are easily accommodated. Operator delay is
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removed since object selection and reselection are not
required.

It is sought to compare related work using standard sys-
tem characteristics such as image resolution and frame
rate. In addition, many CV algorithms require training and
design for occlusion handling. Therefore, Table 1 provides
a comparison of related work by resolution, frame rate,
training and occlusion handling of related PTZ systems.

The method presented in this paper uses Kanatani’s
derivation of pixel position between images taken from
different positions of rotation about the lens center [16].
Murray et al. [17] similarly use Kanatani’s relationship of
knowing the pan/tilt motion in supporting a motion track-
ing system to compensate for the background through im-
age subtraction, edge detection, morphological filtering
and thresholding. Their technique employs a motion-en-
ergy method vs. the optic flow tracking employed in this
paper.

1.3. Overview of this approach

This work is novel in that it is suited for all textured
moving objects (or general purpose) with the application
intent of tracking an indoor UAS. Due to the speed of in-
door UASs, cameras must pan and tilt to track the motion,
and CV algorithms must run at least at 30 fps. If the camera
captured the whole scene, then the resolution would be
unusable. Pan/tilt cameras have the advantage that the
view is not fixed, but every motion of the camera causes
apparent motion of points which are actually static. This
apparent motion, termed background motion, can be calcu-
lated by Kanatani’s relationship [16]. Background motion
must be known to determine the actual motion of moving
points, termed derived motion.

The major contributions of this paper are the analysis
and experimental results of Kanatani’s relationship on opti-
cal flow tracking, and its implementation with GPU-based
optical flow for real-time, general purpose tracking. The
analytical results show the induced error with respect to
geometric approximations. The experimental results use
the static feature points with measured camera motion to
determine the error introduced by optical flow techniques.
Known motion and inertial measurement have been used to
compensate for motion [10,17], but using commanded

motion with optical flow for exact derived motion and back-
ground classification has not been seen by the authors to
date. GPU-based feature detection and tracking is an
advancement beyond the methods presented in Section 1.2.

The goal of this work is to develop a system to track a
single moving object (specifically a UAS) with a pan/tilt
camera. Processing uses a GPU-based, good-features-to-
track detector1 (e.g. corners) and a GPU-based implementa-
tion of the pyramidal Lucas-Kanade algorithm2 [31]. Good
features are detected in an image and placed as optical flow
points. The background motion is calculated for each of these
points in order to extract the derived motion. Optical flow
points with a derived motion less than a threshold are con-
sidered background. Moving points can then be used for
CV-based tracking.

Some possible applications include: tracking and test-
ing of flexible vehicles and structures without the use of
tracking aids, tracking or monitoring vehicles, to include
satellites for intercepting space debris, incoming/departing
aircraft from a flight tower, and obtaining high-quality
images of UASs, satellites, debris, intruders, aircraft, etc.

The system components are described in Section 2. The
theory and extended approximations for application
dependent systems is provided in Section 3. The algorithm
development is provided in Section 4. The experiments and
results are provided in Section 5. The conclusions and fu-
ture work are described in Section 6.

2. System components

2.1. Equipment used

The equipment used for this paper include a Dell M6600
Precision laptop with Intel� Core™ i7-2820QM central pro-
cessing unit (CPU) @2.3 GHz with a NVIDIA Quadro 4000M
graphics card and 2.0 GB dedicated graphics memory, two
PTU-D46-17 pan/tilt units, and two PointGrey Research,
Inc. USB 3.0 Flea-3 FL3-U3-13S2C-CS (1328 � 1048) CMOS
color cameras, two Fujinon Lens-30F2-VC0CS and one USB
to four channel RS-232 communication module: FTDI

Table 1
Related work summary of pan/tilt system resolution and operating frame rate.

Ref. Resolution (width � height) Frame rate (pan/tilt delay) Training Occlusion handling

[11] 320 � 240 11 (unknown) No No
[12] Not available 22 (25 ms) Yes No
[13] 800 � 600 �30 (unknown) Yes Partial
[14] Not available 8 (unknown) No No
[15] 320 � 240 5 (unknown) Yes No
[17] Not available Unknown (unknown) No Partial
[30] 320 � 240 Not available No Partial
[24] 640 � 480 30 (unknown) No No
[27] 1024 � 768 20–25 (unknown) Yes Full
[28] 320 � 240 25 (unknown) No Partial
[29] 768 � 576 25 (unknown) No Partial
[22] 320 � 240 10 (unknown) No Partial
[26] 352 � 255 20–25 (100 ms) No Partial
[23] Not available Unknown (unknown) No Partial

1 OpenCV 2.4.2 Library – GoodFeaturesToTrackDetector_GPU.
2 OpenCV 2.4.2 Library – PyrLKOpticalFlow (GPU).
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USB-COM232-PLUS4 (see Fig. 1). The requested image size
for the experiments is 656 � 524 with a requested shutter
speed of 1.02 ms. The focal length is 1076 pixels.

2.2. Background and system under test (SUT)

A portion of the background used for the initial perfor-
mance testing is provided in Fig. 2.

The System Under Test (SUT) is a hanging UAS (see
Fig. 3) suspended as a pendulum. The large, red circle indi-
cates the calculated pixel centroid, (x,y)pix, and the green
rectangles represent the detected features, gi. The length
of the pendulum is approximately 1.2 m (47 in.), and so
the dynamics of the system are known using

T ¼ 2p

ffiffiffi
L
g

s
ð1Þ

where T is the period, g is gravity, and L is the pendu-
lum length. A period of 2.2 s was determined experi-
mentally over ten cycles which agrees with the
theoretical period. Given the period, the average veloc-
ity of the SUT is calculated using twice the length of
the arc divided by 2.2 s.

3. Theoretical development

3.1. Background optical flow estimation

The motion of the pan/tilt unit is modeled here for
determining where background optical flow points
should theoretically move based on pan/tilt camera
movement. It is assumed that the rotation is about the
camera center. A change in the camera coordinate sys-
tem due to pan and tilt motions leads to background mo-
tion in an image. This background motion, which is the
change in the position of stationary, global points in
the camera coordinate system, is estimated in terms of
pixel movement in an image.

Eq. (2) provides the rotation matrix for pan/tilt motions
where the z-axis represents the principal axis, the x-axis
is positive, right and the y-axis is positive, down.
Pre-multiplying a set of points in global coordinates by

Fig. 1. Equipment used.

Fig. 2. Background used for performance testing.

Fig. 3. System Under Test (SUT) is a hanging helicopter that acts as a
pendulum for tracking; green squares represent the initial placement of
the optical flow points from image, Ii�1 and the large, red circle represents
the calculated pixel centroid, (x,y)pix. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)
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the rotation matrix, R, then gives the new locations of the
points in (3) as seen by the camera.

Rðw; hÞ ¼
cosðwÞ 0 � sinðwÞ

sinðwÞ sinðhÞ cosðhÞ cosðwÞ sinðhÞ
sinðwÞ cosðhÞ � sinðhÞ cosðwÞ cosðhÞ

2
64

3
75 ð2Þ

Xiþ1 ¼ Rðwi; hiÞXi ð3Þ

where Xi is the 3D location of the point with respect to the
camera coordinate system, i is the frame number in a se-
quence of images, wi and hi are the change in pan and tilt
angles from the ith to the i + 1th coordinate system,
respectively. Note that Eq. (3) is use to find the change
from the previous camera coordinate system, not the glo-
bal coordinate system; so only the change in angle is
needed, not the absolute angles.

Using the focal length of the camera to provide propor-
tional points on the image plane with respect to three-
dimensional coordinates provides the ability to determine
optical flow motion of static points given inputs of image
coordinates (x,y) with respect to the principal axis, delta
pan angle, wi, and delta tilt angle, hi. The pinhole camera
model

ðX;Y ; ZÞ> # ðf X=Z; f Y=ZÞ> ¼ ðx; yÞ> ð4Þ

provides the means for determining the image plane coor-
dinates of a set of points from 3D points.

3.1.1. Closed-form solution
The resulting Eqs. (5) and (6) provide the estimated

background location of a point ðx̂; ŷÞiþ1 on the image plane
given an input of image coordinates (x,y)i, focal length, f,
and delta pan and tilt angles, wi and hi. This relationship
was first developed by Kanatani [16].

x̂iþ1 ¼ f
xi � f tanðwiÞ

xi tanðwiÞ cosðhiÞ � yi
sinðhiÞ
cosðwiÞ

þ f cosðhiÞ

 !
; ð5Þ

ŷiþ1 ¼ f
xi sinðwiÞ tanðhiÞ þ yi � f cosðwiÞ tanðhiÞ

xi sinðwiÞ � yi tanðhiÞ þ f cosðwiÞ

� �
: ð6Þ

3.1.2. Small-angle/first-order approximation
Small movements are made and captured from one

frame to the next in the range of 0–3.1� for the experi-
ments given in Section 5. Analysis of using approximations
is sought to evaluate the viability of making such assump-
tions. The small-angle approximation simplifies the
closed-form solution from having to use basic trigonomet-
ric functions by neglecting any second or higher order
terms. The following substitutions are made:
sinðHÞ � H; cosðHÞ � 1; and tanðHÞ � H where H is an
arbitrary angle in radians. The small-angle/first-order
approximation is as follows:

x̂iþ1 ¼ f
xi � f wi

xiwi � yihi þ f

� �
; ð7Þ

ŷiþ1 ¼ f
yi � f hi

xiwi � yihi þ f

� �
: ð8Þ

3.1.3. Simplified, linear approximation
The small-angle/first-order approximation can be fur-

ther simplified by assuming f is the dominant term in the
denominator of (7) and (8). This gives a simplified, linear
approximation of:

x̂iþ1 ¼ xi � f wi; ð9Þ

ŷiþ1 ¼ yi � f hi: ð10Þ

3.1.4. Summary of proposed models
The models above are proposed in hopes that computa-

tional efficiency may be found and utilized according to
application specific needs. Applications requiring faster
processing times, such as embedded microcontrollers,
may determine that one of the above approximations is
more appropriate.

3.2. Approximation accuracy

Sensor bias may be a problem in any sensor-based
application and must be calibrated for application accuracy.
Theoretical accuracy of the small-angle/first-order approx-
imation and the simplified, linear approximation compared
to the closed-form solution provides insight into applica-
tion-specific needs. Figs. 4 and 5 show the mean and max
differences of the small-angle and linear approximations
with respect to the closed-form solution. Note that the
rotational matrix, R, in Eq. (2) applies pan and then tilt
explaining why axis error values are different. For the mean
of a set of points distributed uniformly, the small-angle
approximation provides accuracy to within a pixel for
w 6 8�, h = 0�. The linear approximation provides accuracy
of a pixel for w 6 2.3�, h = 0�. Varying the tilt angle for these
approximations reduces the theoretical accuracy according
to Fig. 4. Asymmetric error is seen in Figs. 4 and 5 primarily
due to the closed form solution’s application of pan and
then tilt operations in the rotation matrix.

Throwing out the assumption of uniform point place-
ment, the worst case error due to the models for a given
w and h is shown in Fig. 5 for the small angle approxima-
tion and the linear approximation. The maximum approx-
imation pixel error is greater with tilt angle, h, for the small
angle/first-order approximation; however, the error is at
least four times smaller than the linear approximation
(e.g., w = 4�, h = 2�, the small-angle give 1/2 pixel and the
linear gives 7 pixels). Utility of the simplified, linear
approximation leans towards applications requiring less
than 2.3� of pan/tilt between images.

4. Algorithm development

4.1. Point classification

In the process of detecting ‘‘good features’’, gi for point
classification, a boundary of 50 pixels from the image edge
is omitted to effectively make a 656 � 524 image, a
556 � 424 image for analysis. This facilitates better overlap
to match ‘‘good features’’ from the previous image, Ii�1, to
the current image, Ii. Fig. 6 shows three scenarios used to

D.D. Doyle et al. / Measurement 48 (2014) 195–207 199



classify optical flow points in a given frame as background,
moving, or noise. Given a pan/tilt movement, the midpoint
between the previous and estimated feature locations is
used to point at a greater distance than the moving object
threshold for noise determination. An optical flow point, gi,
lying within the estimated feature location/background
threshold, bbkgd, is considered background, otherwise a
point within the moving object threshold, dmoving, is consid-
ered a dynamic point.

The background threshold, bbkgd, is the first parameter
used for determining whether gi is background or moving
using the estimated background location, ĝi to give the
Euclidean distance in bi. The second threshold is the mov-
ing object threshold which is a circle about the midpoint of
‘‘good feature’’, gi, and an estimated background location,
ĝi given by the Euclidean distance in di. Therefore, moving
or dynamic points in gi, are classified using the criteria

bi ¼ kgi � ĝik;
biðnÞ > bbkgd 8n 2 fgig

ð11Þ

Fig. 4. The mean error of the small-angle approximation (left) and linear approximation (right).

Fig. 5. Closed-form solution versus the max error of the small-angle approximation (left) and linear approximation (right).

Fig. 6. Interpreting optical flow points in a current frame as background,
moving, or noise.
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di ¼ gi �
1
2
ðgi�1 þ ĝiÞ

����
����;

diðnÞ < dmov ing 8n 2 fgig
ð12Þ

where n is the index of the points in the set of matched fea-
tures, bbkgd is a given threshold for background determina-
tion, and dmoving is a given threshold for dynamic point
determination.

As a basic check for bad matches, any point that has a
bi(n) 6 bbkgd or di(n) P dmoving is considered background or
noise, respectively, and removed. The rest of the points
are assumed to be accurately tracking the moving object
or are classified as background using Eqs. (11) and (12).

The background and moving object thresholds are
determined after testing the capabilities of the optical flow
algorithm with the proposed method of optical flow back-
ground estimation (see Section 5).

The centroid of the moving points should roughly corre-
late with the object’s center. This assumes a normal distri-
bution of good features across the UAS. The mean of the
current locations, gi, of the remaining points gives the cen-
troid in pixels,

centroid ¼ ðx; yÞpix ¼
1
N

XN

n¼1

giðnÞ; ð13Þ

where N is the number of moving points. The mean of the
current displacement vectors, di, of the remaining points
estimates the objects translation,

velocity ¼ ðx; yÞvel ¼
1
N

XN

n¼1

diðnÞ: ð14Þ

4.2. Kalman filter

The Kalman filter is used to predict the movement of
the UAS. The Kalman filter model is given by

Xi ¼ A Xi�1 þ mi�1

Zi ¼ C Xi þ li

�
ð15Þ

where Xi is the state vector, Zi is the measurement vector,
A is the state transition matrix, C is the measurement ma-
trix, mi�1 is the state noise, and li represents the measure-
ment noise. The state and measurement noise, mi�1 and li,
respectively, are assumed to be Gaussian random variables
with zero mean. Their probability density functions are
N½0;Q ki

� and N½0;Rki
�, where the covariance matrix Q ki

and Rki
are referred to as the transition noise covariance

matrix and measurement noise covariance matrix.
A constant acceleration system model is assumed with

the model given by

Xi ¼ Xi�1 þ _Xi�1Dt þ 1
2

€Xi�1Dt2 ð16Þ

where Dt is discrete time and X represents two indepen-
dent state vectors. Therefore, two separate Kalman filters
are incorporated for each direction such that the state

vectors look like Xi;x ¼ ½x; _x; €x�> and Xi;y ¼ ½y; _y; €y�>. The
resulting transition matrix is given in Eq. (17).

A ¼
1 Dt 1

2 Dt2

0 1 Dt

0 0 1

2
64

3
75 ð17Þ

Both position and velocity are measured in a given image, I,
so the measurement matrix is given in

C ¼
1 0 0
0 1 0

� �
ð18Þ

The noise covariance matrix, Q ki�1
, is the identity matrix

multiplied by 1 � 10�4 and the measurement noise covari-
ance, Rki

, is the identity matrix multiplied by 1 � 10�3.

4.3. Pan/tilt control

The goal of the pan/tilt controller is to track the object
near the center of the image. If the object were not moving,
then the pan/tilt unit would simply need to point at the
previous location. Because the object is moving, the Kal-
man filter is used to predict the next location, so that the
pan/tilt unit will point to the anticipated next location.
Note that since the Kalman filter predicts the object loca-
tion in pixels, it is independent of the pan/tilt controller,
so long as the object remains in the image. Therefore, as
long as the measurements, (x,y)pix and (x,y)vel, are accurate,
the system will be stable. The controller does control how
abrupt the motion of the pan/tilt base is.

A deadzone is implemented based on an acceptable
bound of the object in the image. If the predicted point is
more than xdz or ydz away from the image center, then
the pan/tilt is commanded to move the appropriate axis
so that the predicted point will lie on the deadzone bound-
ary for a scale factor of k = 1. The deadzone function is

dzðx; xdzÞ ¼
kðxþ xdzÞ x < �xdz

0 jxj < xdz

kðx� xdzÞ x P xdz

8><
>: ð19Þ

for the x direction. The result of the deadzone calculation
for each independent direction is then converted to pan/tilt
units, added to the current position, and then sent to the
pan/tilt controller:

xpan direction ¼ dzðx; xdzÞcx þ xpan reference

ytilt direction ¼ dzðy; ydzÞcy þ ytilt reference
ð20Þ

where cx, cy represent the conversion constants from pixels
to pan/tilt units in the x and y directions, respectively.

4.4. Algorithm

A flowchart and steps for real-time tracking of a single,
moving object are provided in Fig. 7 and Table 2, respec-
tively. The system rate consists of the time required to cap-
ture an image, process the algorithm, and move the pan/tilt
unit. Real-time tracking for this paper consists of image
capture and algorithm processing speeds P30 fps and sys-
tem rates P15 fps (i.e., image capture and algorithm pro-
cessing speed 6 0:03�3 ms and pan/tilt movement
6 0:03�3 ms for a combined system rate 6 0:06�6 ms).
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5. Experiments and results

5.1. Point estimation performance

The experiments in this section use the closed-form
solution of the background motion. Initial experiments con-
tained a feature-filled background shown in Fig. 2.

It is assumed that the object is no closer than 1 m with a
system rate of 15 fps. Using optical flow background esti-
mation and the previous assumptions, Table 3 gives
approximate pixel movements and object speed for a given
pan or tilt angle, H, with focal length equal to 1076 pixels
used to interpret scale of results.

An object moving 1.2 m/s at 1 m distance will travel 90
pixels at a system rate of 15 fps if the camera is not mov-
ing. As the camera tracks the object, the background points
will move 90 pixels while the object will appear stationary.
Because the threshold to identify erroneous matches is
based on the midpoint of gi�1 and ĝi, a minimum threshold
would be 45 pixels and so this is used for dmoving (see
Fig. 6).

Testing included the use of only the feature-filled back-
ground (see Fig. 2 for a sample of the background). Because
all of the points are known to be static, any difference in
optical flow points from background motion is an error in
the method. Horizontal, vertical and diagonal camera
movements at varying increments with one thousand fea-
tures per frame were used. Table 4 shows the mean with
standard deviation in parentheses for each test along with
the number of frames used.

The large errors of some points unduly influenced the
results of Table 4, so a classification system (see Sec-
tion 4.1) was used to identify points that could be ruled
out as incorrect matches.

Using the background estimation with the moving ob-
ject threshold, Fig. 8 shows the percentage of features ac-
counted for with respect to the estimated distance in
pixels for a movement of 40 pixels.

Since larger errors are seen with diagonal movements,
as shown in Fig. 8, a combination of w and h movements
is used as a means for understanding performance limita-
tions of the system. Therefore, Fig. 9 shows the test sce-
nario for diagonal movements with the number of
features accounted for versus distance. Given w 6 1�,
h 6 1�, 99% of the placed features are accounted for to
within 4 pixels. Figs. 8 and 9 were used to come up with
an appropriate background threshold, bbkgd, to account for
points based on selected movements. Matches further than

Fig. 7. Flowchart and steps for real-time tracking of a single, moving
object.

Table 2
Pan/tilt tracking with background subtraction.

Step Procedure

0 Initialize parameters and capture first image: (x,y)ref = (0,0), (x,y)rel = (0,0), and image, I0; i = i + 1
1 Store previous image, Ii�1 and get current image Ii

2 Detect (x,y) coordinates of ‘‘good features’’, gi�1, in Ii�1

3 Calculate optical flow from Ii�1 to Ii such that gi�1 gives gi

4 Convert relative pan/tilt units, (x,y)rel, to w and h and estimate background pixel movement, ĝi , using gi�1

Subtract gi from the midpoint of gi�1 and ĝi to give M displacements, di ¼ kgi � 1
2 ðgi�1 þ ĝiÞk

Subtract ĝi from the optical flow movement to give N displacements, bi ¼ kgi � ĝik
5 Points in bi: jbi(n)j > bbkgd and di: jdi(n)j < dmoving are considered moving "n 2 {gi}
6 Determine the pixel centroid, (x,y)pix and magnitude, m(x,y), of remaining n in gi

7 Convert (x,y)pix and m(x,y) measurements to the pan/tilt coordinate system and use a Kalman filter for predicting (x,y)rel for Ii+1

8 Convert (x,y)rel to (x,y)pix and apply deadzone check functions dz(x,xdz) and dz(y,ydz)
If (x,y)pix is within a rectangular deadzone, then (x,y)ref remains the same
Otherwise, (x,y)ref is adjusted based upon the deadzone, the scale factor, k, and (x,y)pix

9 Convert (x,y)pix to (x,y)rel

Update the reference pan/tilt coordinates, (x,y)ref = (x,y)ref + (x,y)rel, and direct the pan/tilt camera
10 Repeat starting at step 1
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8 pixels away were very spread out, resulting in limited
advantage of a bbkgd larger than 8 pixels for the tested mo-
tions. Ideally, the smallest threshold should be used, since
it creates a minimum speed that a moving object would be
considered stationary. At 15 fps, 8 pixels would correspond
to a speed of 0.1 m/s at 1 m.

Table 5 shows average algorithm processing times in
milliseconds over 4000 iterations for varying number of
features used and image resolution. A resolution of
656 � 524 with 250 features leaves 14.5 ms for camera
and pan/tilt control for real-time tracking at 30 fps. The
camera used for these experiments achieved an average
time to capture and process an image of 3.4 ms for the re-
quested image resolution of 656 � 524.

5.2. SUT tracking and timing

Experiments were conducted by swinging the SUT in
the range of 30–40� from rest. This provides a maximum
SUT velocity of 1.1–1.5 m/s. The complete system, consist-
ing of image capture, algorithm, and pan/tilt movement;
tracked the SUT at a system rate of 6–18 fps.

The SUT scenario shown in Fig. 10 shows the various
workings of the algorithm for a moving SUT and static
camera. Points that lie less than dmin are eliminated and
shown as red, closed circles. In particular, it is seen that
those points on the doorknob are correctly identified as
background motion and are eliminated from the centroid
calculation. The white, closed circle points show the
matched optical flow points on the moving SUT for deter-
mining the pixel centroid and velocity vector.

The second scenario shows the algorithm at work for a
moving SUT, moving camera (see Fig. 11). Again, those

Table 3
Approximate pixel movement and speed for pan or tilt angle, H, with focal
length = 1076 pixels.

H(�) 1.0 1.5 2.1 2.6 3.1 3.7 4.2 4.7

Pixel movement 20 30 40 50 60 70 80 90
Speed (m/s) 0.3 0.4 0.6 0.7 0.8 1.0 1.1 1.2

Note: Speed relates to an image plane 1 m from the camera with a system
rate of 15 fps.

Table 4
Optical flow error for a stationary background with varying increments.

H Vertical w = 0, h = H Horizontal w = H, h = 0 Diagonal w = H, h = H Diagonal w = H, h = �H Frames
(�) x, y pixels (x, y pixels) x, y pixels (x, y pixels) x, y pixels (x, y pixels) x, y pixels (x, y pixels) (#)

�3.1 �3.1, 17.8 (37.0, 39.2) �47.1, 6.3 (51.6, 36.8) �49.8, 28.6 (68.9, 55.7) �36.9, �25.6 (53.4, 51.8) 16
�2.6 �1.3, 9.5 (23.9, 30.1) �33.8, 7.0 (43.3, 34.2) �35.8, 23.7 (60.1, 49.8) �26.4, �17.0 (48.1, 43.0) 19
�2.1 �0.8, 3.5 (20.2, 19.1) �10.5, 1.7 (33.4, 22.7) �20.8, 13.6 (45.7, 40.9) �18.1, �11.3 (38.6, 34.9) 24
�1.5 �0.4, 0.8 (11.1, 15.0) �2.3, �0.3 (21.5, 12.3) �5.1, 2.8 (25.0, 22.3) �6.7, �4.8 (24.3, 23.3) 33
�1.0 �0.7, �0.7 (13.1, 2.2) 0.0, �0.4 (12.0, 8.6) �0.6, �0.7 (13.0, 8.1) �0.8, �0.1 (13.8, 12.5) 49
�0.5 �0.1, �0.4 (3.9, 1.2) 0.2, �0.1 (5.5, 4.1) �0.1, �0.3 (3.9, 1.9) �0.1, 0.2 (5.9, 5.5) 99

0.5 0.5, �0.2 (6.3, 6.4) �0.3, 0.0 (0.6, 1.7) �0.1, 0.1 (6.5, 6.6) 0.0, �0.4 (2.7, 1.7) 99
1.0 �0.9, 0.0 (15.4, 12.3) �0.9, �0.5 (9.8, 9.7) �0.3, �0.3 (12.5, 13.7) 0.0, �0.9 (10.8, 8.5) 49
1.5 �0.7, �0.8 (14.7, 14.6) 2.2, �0.7 (16.5, 14.2) 6.9, �5.2 (25.0, 23.6) 7.2, 3.9 (25.4, 26.0) 33
2.1 �1.6, �3.7 (22.2, 23.3) 7.4, �0.7 (21.7, 18.4) 15.6, �16.0 (39.6, 40.2) 15.3, 9.5 (30.7, 31.7) 24
2.6 �1.7, �11.2 (23.3, 34.5) 32.5, 2.8 (35.4, 33.3) 31.2, �25.0 (49.9, 48.6) 23.2, 16.2 (36.9, 37.8) 19
3.1 �2.6, �22.2 (33.4, 44.7) 42.8, 2.6 (38.5, 36.2) 41.5, �31.3 (56.2, 53.9) 34.5, 23.2 (50.5, 47.8) 16

Note: x, y pixels (x, y pixels) are the global mean and standard deviations, respectively.

Fig. 8. Account of features (using background estimation with a moving
object threshold) given equal degrees of travel versus pixel distance.

Fig. 9. Account of features (using background estimation with a moving
object threshold) given a diagonal movement versus pixel distance. Note:
a movement of w = 3.1�, h = 3.1� is actually 4.4� of travel.
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points near the doorknob are eliminated as they are iden-
tified as stationary, global points. Despite movement of
approximately 49 pixels, the red points near the doorknob
in Fig. 11 are still eliminated background motion.

Fig. 12 provides a sequence of frames, approximately
0.24 seconds apart for one period, showing the tracking
of the moving (i.e., swinging) SUT with a moving camera.
Note that both upper and lower, left images show elimi-
nated points in red due to the lack of motion of the SUT
during transition.

Timing of the processes involved were determined
using the CPU clock. An average of 999 iterations for image
capture, algorithm, and pan/tilt movement is shown in
Table 6.

The results show that a system rate of 6–18 fps per
camera may be realized for the entire process. The slowest
part of the process consisted of directing the pan/tilt unit
at a minimum of 43 ms and a maximum of 159 ms for
the test given. Larger movements caused larger delays in
pan/tilt movement in order for the unit to complete the di-
rected motion. The algorithm operated at a minimum of
10 ms and a maximum of 17 ms, and the camera operated
at a minimum of 3.2 ms and a maximum of 3.4 ms for a
656 � 524 image. Faster processing of 21 fps is possible
by not waiting for the pan/tilt unit to complete directed
tasks, but the error would not be compensated for. This

would require tuning based on the lag time for a given
pan/tilt unit.

5.3. SUT comparison testing

The proposed algorithm requires no training or match-
ing of features to templates. It is believed that the tech-
nique used in this paper captures faster, single moving
object’s better than existing general purpose methods.
Training for specialized tracking is required in [13,18,27].
A color histogram representation is required in [26,28,29]
and often fails with large shifts in motion or objects of sim-
ilar colors. Specialized tracking of skin color for face detec-
tion is used in [23]. It is sought here to provide further
comparisons in order to give a general idea of realizable
performance characteristics by other algorithms with gen-
eric assumptions.

Comparisons were made using a set of 999 images cap-
tured using the optical flow background estimation. The
timing between images corresponds with Table 6 and
accuracy is determined through a combination of theoret-
ical pendulum placement and user verification.

The comparison algorithms chosen were accessible via
the OpenCV library [31]. The chosen comparison algo-
rithms are optical flow, Color-Adaptive-Meanshift (CAM-
Shift) and GPU SURF with Fast Library of Approximate
Nearest Neighbors (FLANN) matching. Since these algo-
rithms vary in user requirements, tuning and utility, it is
sought here to provide the reader a general idea of perfor-
mance characteristics and comparability of the techniques
developed in this paper and not, necessarily, optimized
techniques.

Merely using optical flow requires the user to specify
how many points to track and where to start. Due to large
shifts in the background, optical flow points are quickly
lost and re-selection is required to continue tracking.
Therefore, it was sought to correct these large displace-
ments due to camera movement using phase correlation

Table 5
Average algorithm time (in milliseconds) for varying image resolutions
versus number of features used.

Image resolution (width � height)

# Of features 328 � 262 656 � 524 984 � 786 1312 � 1048

250 14.0 18.8 21.5 30.6
500 19.6 24.1 27.3 38.0
750 22.1 30.9 33.3 45.8

1000 21.8 36.4 39.4 52.0

Fig. 10. A moving SUT captured by a static camera with previous points
shown as green rectangles, gi�1, current optical flow points as white,
closed circles, gi, estimated points as green, open circles, ĝi, and removed
outliers shown as red, closed circles. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 11. A moving SUT captured by a moving camera with previous points
shown as green rectangles, gi�1, current optical flow points as white,
closed circles, gi, estimated points as green, open circles, ĝi , and removed
outliers shown as red, closed circles. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of
this article.)
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(e.g., phase correlation was used in [14] to provide a rough
estimate of displacement). However, the lack of back-
ground features and the size of the moving object in the gi-
ven test was detrimental in maintaining optical flow
points. Therefore, phase correlation was not used in the
experiments. Both the moving object size and background
features are critical in using phase correlation.

The CAMShift algorithm generally tracked well at
slower speeds where the object was within the range of a
user-specified kernel. Tracking ceased where the local
maximum was found to be a background point that even-
tually left the screen upon pan/tilt movement. Using a

background with the same color as the moving object of
interest would most likely degrade the tracking of the ob-
ject and would require user re-selection of the area of
interest (see Fig. 13).

The GPU SURF feature detection was used due to it’s
speed along with matching using the Fast Library for
Approximate Nearest Neighbors (FLANN). System timing,
using solely the GPU SURF detection algorithm without
matching, provided an average processing speed of around
45 ms. Note that this time is already greater than that
achieved in [13] using OpenCL for the entire process.
Therefore, in fairness, the process could be optimized to
possibly perform better tracking and timing than given
here. Training images consisted of twenty images with
varying camera parameters of the helicopter on a white
background as shown in Fig. 14 (right). Matches were rank
ordered based upon a minimum distance associated with a
match. Matches within 20% of the best match were used to
determine the moving object’s centroid. From preliminary
testing, the threshold of 20% was used subjectively to
eliminate outliers based upon examination of match dis-
tances for the given test. The closest match was not always

Fig. 12. A sequence of frames, approximately 0.24 s apart for one period, of a swinging SUT with the center of the image identified by a white diamond,
previous points shown as green rectangles, gi�1, current optical flow points as white, closed circles, gi, estimated points as green, open circles, ĝi , and
removed outliers shown as red, closed circles. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 6
Timing of image capture, algorithm and pan/tilt movement over 999
iterations.

Procedure Average (ms) Minimum (ms) Maximum (ms)

Image capture 3.4 3.2 3.4
Algorithm 12.7 10 17
Pan/Tilt movement 65.0 43 159

Total 81.0 56.2 179.4

Fig. 13. For comparison purposes, the CAMShift algorithm was used to determine the object centroid. The color histogram (right) is made up of the
components within the ellipse of an image in the test set (left). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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found to be on the moving object and therefore false
matches were often identified.

An advantage of the technique described in this paper is
that it tracks a single, moving object despite changing fea-
tures and background while others require similarity in
features between frames. For example, the proposed algo-
rithm would be able to track a UAS from any orientation
regardless of features whereas feature-based trackers re-
quire training or minimal transient feature characteristics.

Table 7 shows some performance characteristics of the
technique developed in this paper (GPU optical flow back-
ground estimation) along with the selected algorithms.
Again, these results provide a general idea of performance
characteristics related to those of the comparisons de-
scribed in Section 1.2.

6. Conclusions

A real-time tracking algorithm capable of 30 fps using
GPU-based algorithms for a pan/tilt camera was presented.
The theory and approximations were provided to estimate
background motion for optical flow background subtrac-
tion. The experiments with the static background showed
minute benefit in classifying points further than 8 pixels
from the predicted location as background. The larger this
threshold, the larger the lower limit on the speed of the
moving object. Actual tracking experiments showed that
greater angles, P4.4�, could be achieved by tracking a heli-
copter at speeds of P1.2 m/s with the system operating
between 6 and 18 fps.

An algorithm was developed consisting of point classifi-
cation, Kalman filtering and pan/tilt control where point
classification consisted of whether points were back-
ground, motion or noise. The magnitude of the camera

movement was varied to show accuracy of the estimation
of the background motion by comparing it with the mea-
sured optical flow. Results show algorithm processing
times for various image resolutions and number of features
which shows how performance can scale to achieve de-
sired frame rates. In addition, the results show that the
technique developed in this paper requires no training, ini-
tialization/operator selection, or pre-defined capture area
(i.e., alert zone). The novel combination captures faster,
single moving object’s better than existing general purpose
methods.
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