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Anisoplanatism in airborne laser
communication

James A. Louthain and Jason D. Schmidt
Department of Electrical and Computer Engineering

Air Force Institute of Technology
2950 Hobson Way

Wright-Patterson Air Force Base, Ohio 45433-7765

james.louthain@afit.edu

Abstract: Airborne laser-communication systems require special consid-
erations in size, complexity, power, and weight. We reduce the variability
of the received signal by implementing optimized multiple-transmitter
systems to average out the deleterious effects of turbulence. We derive
the angular laser-beam separation for various isoplanaticand uncorrelated
(anisoplanatic) conditions for the phase and amplitude effects. In most
cases and geometries, the angles ordered from largest to smallest are: phase
uncorrelated angle (equivalent to the tilt uncorrelated angle), tilt isoplanatic
angle, phase isoplanatic angle, scintillation uncorrelated angle, and scintil-
lation correlation angle (θψind > θTA > θ0 > θχind > θχc). Multiple beams
with angular separations beyondθχc tend to reduce scintillation variations.
Larger separations such asθTA reduce higher-order phase and scintillation
variations and still larger separations beyondθψind tend to reduce the higher
and lower-order (e.g. tilt) phase and scintillation effects. Simulations show
two-transmitter systems reduce bit error rates for ground-to-air, air-to-air,
and ground-to-ground scenarios.

© 2008 Optical Society of America
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1. Introduction

Lasers offer tremendous advantages over RF in communication bandwidth and security, due
to the ultra-high frequencies and narrow spatial beamwidthof laser propagation. In addition,
optical transmitters and receivers are much smaller and lighter than RF versions and operate at
much lower power levels. Current airborne sensors are collecting data at an ever-increasing rate.
With the advent of hyper-spectral imaging systems, this trend will continue as two-dimensional
data is replaced by three-dimensional data cubes at fine resolutions. Current RF communication
systems cannot keep up with this trend.

Unfortunately, laser propagation through the air is severely affected by clouds, dust, and
atmospheric turbulence, causing long, deep fades at the receiver. The same atmospheric turbu-
lence effects that limit the resolution of optical systems and make the stars twinkle can severely
reduce the amount of laser power received. The atmospheric turbulence in the propagation path
causes the laser beam to wander, spread, and break up. These effects can cause the received
signal power to drop below the receiver’s threshold for milliseconds at a time. For a 10 Gbit/s
binary laser communication system (LCS), a millisecond fade means millions of bit errors.
Since these optical power fades are often very deep, simply turning up the power in this case
would not be effective.

There are essentially two different ways to improve this condition: increase the diversity of
the signal to average out the effects or compensate for the conditions of the turbulence in real
time. In the first case, the temporal and spatial statistics of the turbulence for the propagation
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are estimated and techniques are devised to overcome these effects by applying multiple un-
correlated realizations. In the second case, typically, wavefront sensors measure the real-time
aberrations of the propagation path, and a closed-loop adaptive optics (AO) system applies a
correction to pre-compensate the transmitted beam in real time.

Multiple-transmitter systems increase the diversity of the signal and average out the delete-
rious effects of turbulence without bulky, complicated AO systems, making it an appropriate
choice for airborne laser communications. Through analysis and simulation, we determine opti-
mal configurations for a multiple-transmitter airborne LCSfor various geometries and tracking
systems.

This research derives the requisite angular and parallel separations for multiple-transmitter
systems for airborne and ground-to-ground laser communication. A majority of the previous
research on multiple transmitters has focused on satellitecommunications (in which the turbu-
lence is only present over a short part of the propagation path) or constant-turbulence-strength
paths. [1–7] Here, we present these angular separations forthree airborne geometries (air-to-air,
air-to-ground, and ground-to-air) through extended turbulence and determine practical config-
urations.

Previous research on isoplanatism has defined themaximum angleover which the variance of
turbulence effects between two paths is relativelysimilar. [8–10] These isoplanatic angles have
been determined for the tilt variance, higher-order phase variance, and scintillation (intensity
variance). This research is extended to determine theminimum angleat which the paths are
relativelydifferent. The less correlated the amplitude and phase perturbationsare between the
paths, the better the averaging effect for multiple beams.

Then, we run simulations to explore how separation distances affect the bit error rate (BER)
for multiple-transmitter LCSs. We perform the simulation for multiple scenarios and tracking
systems to determine how effective these multiple-transmitter techniques might be for airborne
platforms.

2. Uncorrelated paths

In this section, we determine the separation required to attain uncorrelated turbulence effects
between two laser beam paths. To investigate this, it is instructive to determine when the paths
are relatively similar first. If a system effect is space-invariant, it is called isoplanatic. [11]
Therefore, if two laser beam paths are considered isoplanatic in terms of any particular turbu-
lence effect, the effects of the two paths are highly correlated.

Most AO systems have a beacon path to measure the turbulence.Sensors at the imaging
system or laser transmitter measure how the turbulence affects the beacon. If the differences
between the phase effects (wavefront variations) of the propagation path and beacon path are
negligible, the phase correction can potentially be implemented effectively. That is to say the
phase effects of the paths are isoplanatic. The phase isoplanatic angleθ0 is the largest angle
between two paths for which the wavefront variations in the two paths are relatively similar. [12]
If the effects of the paths are significantly different then the paths are anisoplanatic.

There are three different types of isoplanatism of interestin this research: the tiltθTA, phase
θ0, and scintillation isoplanaticθχc angles. Tilt refers to the direction of propagation and deals
with tracking a wandering beam or a jittering image. Phase incorporates both the tilt and the
higher-order phase aberrations. Scintillation corresponds to the variations in intensity over the
pupil. Typically, the tilt isoplanatic angle is larger thanthe phase isoplanatic angle, which is
larger than the scintillation isoplanatic angle. Using these isoplanatic conditions as a starting
point, the anisoplanatic conditions are determined for thephase and amplitude effects. The
isoplanatic angleθTA for a constant turbulence strength profile and the phase independence
angleθψind are derived for the first time in this section.
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The refractive index fluctuations drive the phase and amplitude turbulence effects. For the
derivations in this section, we model these fluctuations with the von Ḱarmán power spectral
density (PSD) of the refractive index fluctuations [12,14]

Φn(κ,z) =
0.033C2

n(z)

(κ2 +κ2
0)11/6

, (1)

whereκ is the 3-D radial spatial frequency andκ0 = 2π/L0. This PSD is the most appropriate
since it includes the outer scaleL0 which limits the size of the large-scale phase effects (i.e.
turbulent eddies) which drive the phase anisoplanatic conditions. The refractive index PSD
used to derive the isoplanatic conditions consisted of onlythe numerator in Eq. (1), since the
outer-scale does not affect the isoplanatic conditions.

2.1. Phase isoplanatism

Fried derived the phase perturbation structure function in1966 as [12,13]

Dψ(∆x) = E{[ψ(x)−ψ(x+∆x)]2} (2)

= 2Γψ(0)−2Γψ(∆x), for stationary random processes, (3)

= 2.91k2 (∆x)5/3
∫ L

0
C2

n(z)dz. (4)

where E is the expectation operator andΓ is the auto-correlation. Theψ term denotes the pupil
phase perturbation andCn(z)2 is the strength of turbulence along the path. It can be shown from
Eq. (4) that the phase structure function at the receiver fortwo point sources separated by angle
θ as viewed by the receiver is

Dψ(θ ,L) = 2.91k2 [sin(θ)]5/3
∫ L

0
(L−z)5/3C2

n (z) dz. (5)

For this geometry, most of the literature has defined the isoplanatic angle to be the angle at
which the structure function is less than or equal to unity. [8,12,14] Applying this condition

Dψ(θ0,L) = 1 rad2 (6)

and solving for the angle results in the familiar isoplanatic angle relation defined by [8]

θ0 =

[

2.91k2
∫ L

0
C2

n(z)(L−z)5/3dz

]−3/5

, (7)

whereC2
n(z) is the structure parameter of the turbulence at locationz along the path,L is the

propagation path length, andk = 2π/λ is the optical wave number. It is important to note
which isoplanatic-angle definition is used. This definitionassumes the two point sources are in
thez= 0 plane. Many definitions in the literature define thez= 0 point as the location of the
receiver. [9,12,14] To adjust, letz′ = L−z in Eq. (7).

2.2. Angular phase independence of two beams

Now, we apply these concepts to statistical independence todetermine the phase independence
angle. The phase structure function in Eq. (5) increases with separation angle, approaching
a maximum value at two times the mean square phase or 2σ2

ψ as the two paths are placed far
apart. This time, we apply the condition for the maximum value for the phase structure function
to defineθψind as the phase independence angle

Dψ(θψind ,L) = 2σ2
ψ,pl . (8)
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Combining Eqs. (6) and (8) allows us to solve forθψind , yielding

θψind = 2σ2
ψ,plθ0. (9)

Using a geometrical optics plane-wave propagation approximation, the phase variance for a
point receiver can be written as [14]

σ2
ψ,pl

∼= 4π2k2
∫ L

0

∫ ∞

0
κΦn(κ,z)dκ dz (10)

= 0.78k2κ−5/3
0

∫ L

0
C2

n(z)dz. (11)

For horizontal propagation (i.e. constantC2
n) the independence angle simplifies to

θψind = 0.7402k4/5C4/5
n L−3/5κ−5/3

0 . (12)

This relation forθψind , first derived here, defines the angle over which the phase effects
between the propagation paths of two point sources are nearly uncorrelated. It follows that
the phase-independence separation distance can be defined as dψind = Lθψind . As expected, this
independence angle increases with outer scale. At this angular separation, the beams should
wander independently, and the higher-order phase perturbations should be uncorrelated as well.
At this separation a fixed multiple transmitter LCS (e.g. last-mile-type communications) could
be designed so that at least one beam with sufficient power remains on the receiver at all times
without the need for tracking. This independence angle is highly dependent on the outer scale,
which varies near the ground asL0 ≈ 0.4h. [15] For example, twoλ = 1.55µm transmitters
would need to be separated bydψind = 43 cm (θψind = 213 µrad) for a 2 km path located 1 m
above the ground with a turbulence strength ofC2

n = 1.71×10−14 m−2/3. For a 4 km path, that
separation would need to approach 65 cm.

At high altitudes the effective outer scale is determined bythe vertical outer scale and the
horizontal outer scale. The vertical outer scale typicallyvaries from 10 to 70 m, [16] while the
horizontal outer scale can be much larger. Aircraft measurements have determined the horizon-
tal outer scale can be over hundreds of kilometers. [15] For horizontal propagation simulations
in our work at altitude, an infinite outer scale is used because L0 ≫ D. When a finiteL0 is
needed with slant ranges, the effective outer scale is determined by taking a slice through the
vertical outer scale

L0 =
L0vert

cosξ
, (13)

whereL0vert is the outer scale for vertical propagations andξ is the zenith angle. Both, the outer
scale and inner scalel0 vary with altitude. In this research, these bounds on the turbulence are
consistent with atmospheric data presented by Wheelon. [15]

2.3. Parallel path isoplanatism

Using Eq. (4) again, we determine the parallel path isoplanatic distance. Now, we look at the
phase structure function at the receiver for two point sources separated by∆x. The structure
function for parallel path beams is

Dψ(∆x,L) = 2.91k2 (∆x)5/3
∫ L

0
C2

n(z)dz. (14)

As we did for the isoplanatic angle condition, we determine the separation∆x0 at which the
structure function is unity. The parallel isoplanatic distance is

∆x0 =

[

2.91k2
∫ L

0
C2

n(z)dz

]−3/5

= 0.6611ρ0 = 0.3148r0, (15)
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whereρ0 is the spatial coherence radius andr0 is the coherence diameter. [12,14] For a constant
C2

n(z) path

∆x0 = 0.5268k−6/5C−6/5
n L−3/5 = 0.555Lθ0. (16)

Interestingly enough, this separation is simply(3/8)3/5 times the separation for angularly sep-
arated paths. Similar to Eq. (8), the plane-wave independent phase separation distance is de-
termined by setting the structure function equal to the maximum value and solving for the
separation

∆xind = 2σ2
ψ,pl∆x0 = 0.4109κ−5/3

0

[

k2
∫ L

0
C2

n(z)dz

]2/5

. (17)

For a constantC2
n profile, it simplifies to

∆xind = 0.4109k4/5C4/5
n L2/5κ−5/3

0 = 0.555Lθψind . (18)

2.4. Tilt isoplanatism

Sasiela developed relationships for the differential tiltvariance which can also be referred to
as the structure functionσ2

T(x) = E[T(x1)−T(x1 +x)]2 of the Zernike tiltT. We use the no-
tation used by Sasiela to allow the reader to follow this workand refer back to Sasiela’s. [9]
From those relations, he determined a relation for the tilt isoplanatic angle for an astronomical
seeing geometry. The refractive index PSD used here does notinclude the outer scale. Sasiela
investigated the effect of outer scale on the tilt isoplanatic angle. The outer scale greatly affects
tilt variance, but does not appreciably affect tilt isoplanatism (especially when the outer scale
is much larger than the receiver aperture). [10] The differential tilt (i.e. the difference between
the Z-tilts) consisted of two contributions: one for∆x < D (beams overlap) called the lower
contribution and the other for∆x > D (beams do not overlap) called the upper contribution,
whereD is the receiver diameter. The differential tilt variance differs with each axis: the beam
displacement axis is denoted by the parallel symbol, and theperpendicular symbol denotes the
other axis. This difference in tilt variance can be quite significant [9, 17, 18], but oftentimes
these two orientations are added to determine the total differential tilt. The total differential tilt
is the sum of the upper and lower contributions for each axis [9]

[

σ2
‖

σ2
⊥

]

=

[

σ2
‖

σ2
⊥

]

L

+

[

σ2
‖

σ2
⊥

]

U

. (19)

Now, we derive a closed-form approximation for the differential tilt for a constantC2
n profile

or horizontal propagation, taking into account both the lower (∆x < D) and upper (∆x > D)
contributions. Starting with∆x< D, one must only consider the lower contribution forθ < D/L,
whereθ = ∆x/z. After performing the integration overz from 0 to the propagation lengthL,
the differential tilt becomes

[

σ2
‖

σ2
⊥

]

=

[

σ2
‖

σ2
⊥

]

L

=
6.08C2

n

D1/3
×

{

[

1.316
0.439

]

[

(

θ
D

)2(

L3

3

)

−

[

2.2955
1.377

](

θ
D

)4(

L5

5

)

+ · · ·

]

(20)

+

[

2.195
0.388

]

[

(

θ
D

)14/3(

3
17

)

L17/3−

[

0.1756
0.1298

](

θ
D

)20/3(

3
23

)

L23/3 + · · ·

]}

,

whereθTA < D/L. As θ approaches zero, the differential variance approaches zero, as ex-
pected. To define the tilt isoplanatic angle as Sasiela did, the first term of the infinite sum is set
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equal to one half of the diffraction-width angle,

σ2
T = σ2

‖ +σ2
⊥ ≈

6.08C2
n

D1/3
×

[

1.755

(

θTA

D

)2(

L3

3

)

]

=

(

0.61λ
D

)2

. (21)

Solving for θTA, we derived the tilt isoplanatic angle for horizontal propagation as approxi-
mately [17]

θTA =
0.323λD1/6

CnL3/2
, θ < D/L. (22)

This straight forward equation for constant turbulence strength can be used to determine the
maximum angular separation between the beacon path and the propagation path forθ < D/L
with a tracking system which is important for all our scenarios except the ground-to-ground
scenario.

Now, for θ > D/L, following Eq. (19) we must add the significant terms for the lowerand
upperportions to determine the overall differential tilt variance

[

σ2
‖

σ2
⊥

]

≈
6.08C2

n

D1/3

{

L

[

1
1

]

−

[

0.7801
0.9057

]

D
θ
−

[

0.797
1.197

](

D
θ

)1/3
[

L2/3−

(

D
θ

)2/3
]}

. (23)

Both portions of the tilt variance are added to determine theoverall tilt variance:

σ2
T = σ2

‖ +σ2
⊥ ≈

6.08C2
n

D1/3

[

2L+0.3077
D
θ
−1.9935

(

D
θ

)1/3

L2/3

]

θ > D/L. (24)

As before, one could solve forθ , this time numerically, to determine the tilt isoplanatic angle
for θ > D/L.

2.5. Scintillation anisoplanatism

Stars twinkle, but the moon and even the planets do not twinkle in the night sky because their
angular extents are much larger than the scintillation independence angle. In weak turbulence,
the angle at which two point sources scintillate independently was postulated by Fried to be
θχind = 0.8(Lk)−1/2, [19] corresponding to a separation distance ofdχind = 0.8(L/k)1/2. This
relation is very similar to the correlation widthρc defined as the 1/e2 point of the normalized
irradiance covariance function. [14] Sinceρc, for weak turbulence varies between 1 to 3 Fresnel
zones(L/k)1/2 depending on beam size, we refer to it here in this work as simply [14]

ρc =
√

L/k. (25)

For strong turbulence (Rsph & 0.25) the scintillation saturates and the correlation width of
irradiance fluctuationsρc is driven by the spatial coherence radiusρ0 and the scattering disk
L/(kρ0).

The spherical wave Rytov number is

Rsph = 0.5631k7/6
∫ L

0
C2

n(z)(L−z)5/6
( z

L

)5/6
dz (26)

≈ σ2
χ Rsph. 0.25 (27)

& σ2
χ Rsph& 0.25. (28)

For weak turbulence the spherical wave Rytov numberRsph is equal to the log-amplitude vari-
ance calculation using this Rytov approximation. Since thescintillation saturates with strong
turbulence, the Rytov number does not equal the log-amplitude variance.
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The correlation widthρc is often used to describe the receiver size at which apertureaverag-
ing occurs as the receiver size increases. Here, we use the principle of reciprocity to determine
the angular separation of the transmitters and refer to thisrelation as the scintillation correlation
angle asθχc = (Lk)−1/2. The values of this angleθχc for propagation lengths of 100 km and
29 km atλ = 1.55 µm are 1.57µrad and 2.91µrad, respectively.

2.6. Considerations of isoplanatic and anisoplanatic effects

As mentioned in Section 2.2, the anisoplanatic condition can be determined by analyzing the
structure functions of the effects. In previous work, Louthain determined analytic log-amplitude
and phase structure functions for a horizontal path [22]

Dχ(d) = 3.089

(

L0

r0

)5/3∫ ∞

0

[

1−J0

(

κd
L0

)][

1−
2πL2

0

λLκ2 sin

(

λLκ2

2πL2
0

)]

κdκ
(κ2 +4π2)11/6

, (29)

and

Dψ(d) = 3.089

(

L0

r0

)5/3∫ ∞

0

[

1−J0

(

κd
L0

)][

1+
2πL2

0

λLκ2 sin

(

λLκ2

2πL2
0

)]

κdκ
(κ2 +4π2)11/6

, (30)

whereJ0 is the zeroth order Bessel function of the first kind and the von Kármán PSD from
Eq. (1) was used to model the turbulence. Here, we plot those equations and the corresponding
isoplanatic and anisoplanatic distances in Fig. 1. Starting with the phase effects annotated in
green, the isoplanatic angle occurs when the phase structure function is unity. As the separation
widens, the tilt effects are isoplanatic until the tilt isoplanatic angle is reached. The only signif-
icant difference in these phases is due to the higher-order phase. Finally, at separations on the
order of 2L0 all of the phase effects including tilt are anisoplanatic between the two paths. The
amplitude effects are shown in blue. At about 2ρc the structure function reaches a maximum
and settles into a value of two times the mean square log-amplitude variance, as the amplitude
effects become uncorrelated. These separations are determined by the Fresnel zone(L/k)1/2

and are consistent with results for weak turbulence, i.e. Rytov numberRsph< 0.25 mentioned
in Section 2.5. [14] For Anguita’s stronger turbulence ground-to-ground propagation scenarios
whereRsph = 1.6 these uncorrelated separation distances were greater (approximately 6ρc)
due to the long correlation tail of the strong turbulence. [7,14]

Now that we have the relations for isoplanatic and anisoplanatic effects, we compare
these angles for different scenarios in Fig. 2. Horizontal propagation near the ground is
shown in plot (b). If we separate transmitters in the ground-to-ground scenario by the phase-
independence angle, then tracking might not be required. Aslong as there is a sufficient number
of transmitters, the beams would wander independently withat least one beam on the receiver at
any given moment. The fixed pointing angle could be determined by maximizing the long-term
irradiance for each beam. The isoplanatic angle and the scintillation correlation angle cross
at about 2.5 km. For propagations beyond the cross-over point scintillation is more correlated
than phase effects. In plot (c), these terms cross, too, thistime after propagating about 100 km.
This also corresponds very well with Fig. 1 where the isoplanatic angle and the scintillation
correlation angle nearly coincide withθ0 slightly smaller thanθχc for the 100 km air-to-air
scenario.

For a mobile transmitter (Tx) and/or receiver (Rx), the beams must be tracked. For these
tracked-beam cases in Fig. 2(c) air-to-air path, (d) air-to-ground path, and (e) ground-to-air
path, separations beyond the isoplanatic angle up to approximately the tilt isoplanatic angle
should average out the higher-order phase effects. Separations larger than the tilt isoplanatic
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Fig. 1. The phase and amplitude structure functions are plotted for a 100 km horizontal
propagation at 10 km altitude, with angularly separated beams. The strength of turbulence,
L0/r0 = 286 andL2

0/(λL) = 23225.

angle will require separate trackers. This occurs for longer propagations and near-transmitter
turbulence, since the phase tilt effects are large due to thelong lever arm of the turbulence. Small
isoplanatic and tilt-isoplanatic angles occur for propagations longer than 100 km in plot (c) and
for the ground-to-air propagation shown in plot (e). In plot(d) describing the air-to-ground
scenario, the correlation angles get smaller as the propagations get longer, but as the altitude of
the transmitters gets above the turbulence at about 12 km, the angles remain relatively similar.

3. Simulation set-up and validation

Next, we determined how much multiple transmitters improveBER performance by conduct-
ing simulations for different scenarios and separation distances. The turbulence effects explored
subsequently in simulated scenarios were represented by random optical field screens with the
correct statistics placed along the path. The layers for this research were chosen to simulate
the continuous model so that several low-order moments of the layered model match the con-
tinuous one. In this research, ten random phase screens wereused to model the turbulence
along varying-turbulence-strength paths and five screens along the constant-turbulence-strength
paths. The layered analytic analytic planar and spherical coherence diameterr0, planar and
spherical Rytov numbersR, and isoplanatatic angleθ0 matched within 1% of the full path con-
tinuous atmospheric turbulence parameters. Table 1 summarizes the atmospheric parameters
for the simulations used to calculate the BER. In the simulations that follow a Gaussian beam
with a 1/e field radiusw0 = 2.5 cm propagates to the receiver aperture with a Fresnel ratio
of Λ0 = 2L/(kw2

0). Andrews and Phillips call beams withΛ0 & 100 approximately spherical
andΛ0 . 0.1 approximately planar. Therefore, the equations in previous sections where a point
source or spherical wave are used are a reasonable approximations, especially for the air-to-air
propagation. Earlier, the von Kármán turbulence power spectrum was used to model the phase
effects.

Andrews and Phillips’ modified turbulence power spectrum isused in the simulations per-
formed in this research because it includesL0 and l0, and gives the best agreement with col-
lected atmospheric data for phase andamplitudeeffects. [14] The Hufnagel-Valley turbulence
profile was used in this research with the parameters set to the HV-57 moderate turbulence
strength (i.e. turbulence at the ground isA = 1.7×10−14m−2/3 and the effective wind at alti-
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Fig. 2. (a) Scenarios for plots b-e are shown pictorially. Phase isoplanatic angle (θ0), scin-
tillation correlation angle (θχc), tilt isoplanatic angle (θTA), and phase uncorrelated angle
(θψind ) are shown for a receiver diameter ofDR = 20 cm. (b) Horizontal propagation:
altitudeh = 1 m, L0 = 40 cm,C2

n = 10−14 m−2/3, andL = 0 to 10 km. (c) Horizontal
propagation: altitudeh = 10 km,L0 = 100 km,C2

n = 10−17 m−2/3, andL = 0 to 300 km.
(d) Air-to-ground path: Transmitter heightHTx = 4 to 20 km, zenith angleξ = 70◦, and
receiver heightHRx = 0 km for HV-57 profile. (e) Ground-to-air path:HTx = 0 km, zenith
angleξ = 70◦, andHRx = 4 to 20 km for HV-57 profile.
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Table 1. Atmospheric Parameters for the scenarios used in the BER calculations.

Scenario r0pl (cm) r0sph (cm) Rpl Rsph θ0 (µrad) θTA (µrad) Λ0

ground-to-ground 2.5 4.5 1.08 0.437 3.5 11.7 3.2
ground-to-air 10 85 0.911 0.0461 1.2 11
air-to-air 23 41 0.384 0.155 1.3 3.0 79

tude isW = 21 m/s).
We used modal based Fourier-series (FS) phase screen generation, since it allows for better

low spatial frequency representation than other techniques. [12,20–23] This modal phase screen
is defined for all space and need only be evaluated at the grid points of interest. This approach
is particularly effective when calculating the fields of widely spaced beams over long periods
of time. Although, in this work random realizations of turbulence are used in the simulations,
since we assume the turbulence is an ergodic random process.Here, logarithmically-spaced
frequencies are used, as recommended in an MZA report by Magee to take advantage of the
modal-based representation. [18] The FS expansion of the phase can be approximated by [21]

φ̂(x) =
N−1

∑
n=−(N−1)

N−1

∑
n′=−(N−1)

cφ
n,n′ exp

{

j2π
(

nx
Dp

+
n′y
Dp

)}

, (31)

where the phase is represented in a square of dimensionDp andcφ
n,n′ is the FS coefficient for

the spatial frequencyf = x̂n/Dp + ŷn′/Dp. The termŝx andŷ are thex− andy−directed unit
vectors, andx andy are the components of the spatial vectorx.

Split-step Fresnel propagations are performed for aw0 = 2.5 cm collimated Gaussian beam.
Great care was taken to adequately sample the Fresnel propagation between the screens as well
as the turbulence effects as the beam propagates. We satisfied sampling constraints to avoid
aliasing in the beam as well as the quadratic phase term in theFresnel propagation. [24] The
most restrictive constraint was satisfied by performing multiple partial propagations (i.e. split
step propagations) to propagate the full distance.

We validated the simulations to ensure the calculations arerepresentative of the diffraction
and atmospheric turbulence effects. For each of the propagation lengths, the irradiance and
phase of the Gaussian beams after propagating through a vacuum matched the analytical solu-
tion. The structure function of each of the phase screens wasalso consistent with the theoretical
values. The scintillation index at the receiver for a simulated point source was consistent with
the Rytov approximation for scintillation. For each of the turbulence simulations, the meas-
ured long-term spot size was consistent with the analytic spot size. These results confirmed the
simulation operated as expected and should adequately model the turbulence.

4. Modeling receiver noise sources

Modeling receiver noise sources is essential to accuratelyrepresenting a communication sys-
tem. Two fundamental noise sources for optical receivers are the signal-level-dependent shot
noise and the temperature-dependent Johnson noise. Shot noise is fundamentally a Poisson
random process as the photo-electrons are generated for random arrivals of photons. The num-
ber of photons per bit is well over 100 in all of the cases studied here. Furthermore, as the
captured power approaches zero, the shot noise approaches zero much faster than the signal.
Therefore, shot noise current statistics are well approximated as a zero-mean Gaussian random
process [26,27]. The mean-square current due to shot noise is given by [28]

E
{

i2shot

}

= σ2
shot = 2qiSB =

2ηq2PB
hν

, (32)
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whereq = 1.602×10−19 C is the elementary charge,is is the signal current,B is the electri-
cal bandwidth,η is quantum efficiency (electrons/photon),P is optical power at the detector
(Watts),h= 6.626×10−34 J·s is Planck’s constant, andν is optical frequency (Hz). The product
hν gives the energy in joules of a single photon. The signal current is assumed to be constant
during any given integration period corresponding to a single bit. Comparing the frequency of
atmospheric change (< kHz) with bandwidths studied (> MHz), this is a reasonable assump-
tion.

Johnson noise current is typically modeled as a zero-mean Gaussian random variable, with
mean-square current determined by [28]

E
{

i2elec

}

= σ2
elec=

4KTB
R

, (33)

whereK = 1.381× 10−23 J/K is Boltzmann’s constant,T is temperature of the electronics
(K), andR is the effective input resistance (ohms). These are the primary noise sources in the
receiver.

There is also noise due to the type of amplifier or gain mechanism. In this research the
received optical signal is coupled into an erbium-doped-fiber amplifier (EDFA). The advantage
of the EDFA is the capability to achieve high gain at very highbandwidths. In addition, the gain
in an EDFA saturates, affording some gain control to reduce optical signal variation. EDFA
noise can be modeled as a signal-dependent amplified stimulated emission (ASE) noise source
given by [26]

E
{

i2ASE

}

= 4q2nspηinη2
outG(G−1)

P
hν

B

σ2
ASE = 4nspηoutq(G−1)isB, (34)

whereG is the gain,ηin andηout are the input and output losses, andnsp is the spontaneous
emission factor. Other gain mechanisms like avalanche photo diodes (APD) are limited to about
100-200 GHz gain-bandwidth product, whereas an EDFA with a PIN photodiode would be at
least an order of magnitude higher. [26] For lower bandwidths an APD is advantageous due to
a much higher coupling efficiency.

5. Simulation approach

The receiver consists of a 20-cm-diameter lens with a 1 m focal length focused onto a single-
mode optical fiber. The fiber core’s diameter was 3µm and the numerical aperture (NA) was
0.20, consistent with a commonly available EDFA. For the 100km propagation the collimated
Gaussian beam at the Rx is much larger than the aperture and since r0 > D the spot size at
the focal plane of the lens is determined by 2.44λ f/D, limited only by diffraction. For the
ground-to-ground and ground-to-air cases the turbulence-induced spot size is approximately
2.44f λ/r0, sincer0 < D for those cases. See Table 1 and Fig. 3.

For the angularly-separated-beam scenario, two Gaussian beams are displaced half the sep-
aration distance in opposite y-directions and a linear phase is applied to “aim” both beams at
the center of the receiver aperture. For the parallel-beam case, the two Gaussian beams are
displaced, and each beam remains off-axis by half the separation distance.

A coarse tracking system was simulated for the transmitter and receiver for the ground-to-air
and the air-to-air paths by implementing an ideal centroid tracker and adding random tracking
system errors. The errors in the Tx tracker are driven by tiltisoplanatismσ2

TA due to the point-
ahead angle, temporal errorsσ2

TT in the controller, platform jitterσ2
PJ, and measurement error

σ2
TM. Therefore the total transmitter tracker error is

σ2
j = σ2

TA+σ2
TT +σ2

PJ +σ2
TM (35)
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2.44λf/r0

Fig. 3. In turbulence whenD > r0, the spot size is determined by 2.44λ f/r0. Where as
whenr0 > D, the spot size is limited primarily by diffraction, leading to the tighter spot
size of 2.44λ f/D.

measured in rad2. The tilt anisoplanatic error is driven by how close the separation angle is
to the tilt isoplanatic angle. The temporal error is dependent on the bandwidth of the tracking
system and the tilt measurement error depends upon the signal to noise ratio (SNR) of the tilt
measurement. The platform jitter is driven by the residual vibrations of the transmitter and
receiver. The receiver tracker error includes the last three terms of Eq. (35).

6. Simulation results

We ran simulations using independent random realizations of the appropriate turbulence statis-
tics to determine the optimal separations for a two transmitter system for three scenarios: a
ground-to-ground fixed transmitter and receiver 4 km link with a Rx and Tx height of 1 m, a
ground-to-air (h = 1 m to 10 km) 30.2 km path with a zenith angleξ = 70◦, and an air-to-air
100 km path at 10 km in altitude.

A number of performance measurements were calculated, but the differential irradiance vari-
ance between the two beamsσ2

∆irr = E
{

(I1− I2)2
}

−E{I1− I2}
2 best indicated when adequate

averaging would occur. [2, 3, 7] The larger the differentialirradiance variance, the less corre-
lated the irradiance fluctuations become. For uncorrelatedbeams this variance should approach
two times the irradiance variance of a single beam. If the angular separation is much beyond
this point, the power received at the detector or fiber is reduced due to the difference in the
angle-of-arrival (AOA) of the beams. As parallel beams movefarther off-axis, power reduces
and the variability of the constituent beams increases. This effect increases the BER of the two-
transmitter system driving the performance below the one-transmitter case. As shown in Fig. 4,
beams approached uncorrelated irradiance variance at about 2-3 ρc for angularly separated
beams for both the air-to-air tracked system and the ground-to-air tracked system. In addition,
for the air-to-air scenario this the amplitude structure function has a peak before settling into
the asymptotic value of two times the irradiance variance ofthe single beam.

Then, we determined the BER for different scenarios, tracking systems, and separation dis-
tances. Plots are shown in Figs. 5-8. In calculating the BER,we used the probability mass
function of the detected signal current (determined by the histogram of the received signal)
and accounted for the shot, thermal, and ASE noise. Since theshot and ASE noise are signal-
dependent, their variance changed for each independent realization, while the thermal noise
variance was fixed. We solved for the optimal fixed threshold and determined the probabilities
of missed detections and false alarms. The total power in thesingle-transmitter system was 1
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Fig. 4. Differential irradiance variance for two angularly separated beams. Irradiance is
taken from the center of the untracked beams, separately tracked beams, and a single com-
bined beam tracker. The solid blue line is two times the variance of on-axis irradiance of
a single beam. The differential variance approaches two times this value as the separation
increases. (a) Air-to-air path angular separation (b) Ground-to-air path angular separation.

Watt, and the total power in the double-transmitter system was also 1 Watt (0.5 Watts in each
transmitter). For the BER charts, the gain of the EDFA remained constant at 30 dB. The signal
level differences shown in the plots vary due to differencesin propagation attenuation, coupling
efficiencies, transmitter levels, etc., but do not depend onthe gain of the EDFA.

First, we calculated the BER for the ground-to-ground path for single and double-transmitter
systems. No tracking system was used in this case, and the beams walked off of the receiver
often. To quantify this, note that the standard deviation ofthe beam walk-off was 9.5 cm and
the short-term beam half-width was 8.3 cm. The differentialtilt variance approached two times
the single tilt variance in the direction parallel to the separation for very small separations
(i.e. 3 cm), but for the perpendicular direction the required separation distance for uncorrelated
phase was about 10ρc or aboutdψind/2. This phenomenon is consistent with the differential
tilt relations presented by Sasiela. [9] Figure 5 shows there was slight improvement for the
double transmitter case over the single beam when the transmitters propagated in parallel, but no
improvement for angular separations. Due to the inherent AOA for angularly separated beams,
the peaks of the focal spots of both beams on average miss the fiber, reducing the coupling
efficiencies. If the fiber core is small, as in this case, this could severely limit the coupling of
both beams. Whereas with the parallel beams, the focal spots were on average on the center of
the fiber, allowing for much better coupling.

Next, we calculated the BER of a tracked ground-to-air scenario. The BER charts in Fig. 6
show that there is an improvement afforded by using two transmitters of about 3 dB for the
ideal tracker. Interestingly, two transmitters also improved performance for the non-ideal case
for a tracker error ofσ j = λ/(4D). Parallel beams were used with a center tracker system. For
this case, Fig. 7 shows an improvement again for a tracking system withσ j = λ/(4D). This
improvement reduces in both cases as the tracking system performance degrades.

Finally, the BER charts in Fig. 8 for the air-to-air 100 km path shows the best improve-
ment for a separation distance of 2 to 3ρc. This is consistent with the differential scintillation
measurements. The largest improvement (approximately 4 dB) occurs for the finest tracking
system. As the tracking degrades, the improvement due to thesignal diversity decreases.
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Fig. 5. These plots show the BER for a ground-to-ground link. In plot (a) the beams were
angularly separated and in plot (b) the beams were separated, but traveled in parallel.
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Fig. 6. Bit error rate for a ground-to-air link with angularly separated beams with vari-
ous tracking systems (a) ideal centroid tracker, (b)σ j = λ/(8D), (c) σ j = λ/(4D), and
(d) σ j = 3λ/(8D).
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Fig. 7. Bit error rate for a ground-to-air link for parallel separated beams. Center
beam tracker. Various tracking systems (a) ideal centroid tracker, (b) σ j = λ/(8D),
(c) σ j = λ/(4D), and (d)σ j = 3λ/(8D).

7. Conclusions

Knowledge of the isoplanatic and uncorrelated angles of particular scenarios can enable
multiple-transmitter systems to be configured to optimize the averaging effects. For a group
of beams with one tracker, the optimal angular separation must be less than the tilt isoplanatic
angle. In this regime, the scintillation and the higher-order phase effects can be averaged, and
the beams wander together so that the tracking system can adequately track all of the beams
at once. Beams separated beyond the tilt isoplanatic angle wander independently causing track
errors and reduced signal levels.

For a multiple-transmitter untracked system, the outer scale and the mean-square phase play
a large role in determining an appropriate separation angle. The likely application for an un-
tracked system is a ground-to-ground last-mile communication system, since the system is
stationary and the outer scale is small, allowing for reasonable separation distances.

The optimal separation in terms of reducing BER corresponded to 2-3 timesρc for most of
the scenarios. In most cases, the BER improvement for a two-transmitter system reduced as the
tracking system degraded. For small focal-plane collectors like a single mode fiber, AOA plays
a huge part in the received signal level. Not only is AOA variance an issue, the mean AOA can
be a concern if beams are angularly separated. Since scintillation effects begin to decorrelate
for fairly small separations, the transmitters only need tobe separated by approximately 2ρc for
most scenarios.

To illustrate the optimal separation only two beams were used, so the full impact of our ap-
proach has yet to be explored. Others have shown that four beams, for instance, can be very
effective in a ground-to-ground link scenario. [7] This approach shows great potential in per-
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Fig. 8. Air-to-air 100km path at 10km altitude. Various tracking systems (a) ideal centroid
tracker, (b)σ j = λ/(8D), (c) σ j = λ/(4D), and (d)σ j = 3λ/(8D).

formance and simplicity of implementation, especially when combined with signal-processing
techniques. Accordingly, the next step in this research will be to determine thetemporalben-
efits afforded by multiple anisoplanatic transmitters. We will investigate signal-fade properties
of using multiple beams and potential trickle-down effectsof coupling multiple beams with
interleaving, forward error correction, and adaptive thresholding.
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