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Optical phase unwrapping in the
presence of branch points

Todd M. Venema and Jason D. Schmidt
Air Force Institute of Technology

2950 Hobson Way
Wright-Patterson AFB, OH 45433

Todd.Venema@AFIT.edu

Abstract: Strong turbulence causes phase discontinuities known as
branch points in an optical field. These discontinuities complicate the phase
unwrapping necessary to apply phase corrections onto a deformable mirror
in an adaptive optics (AO) system. This paper proposes a non-optimal but
effective and implementable phase unwrapping method for optical fields
containing branch points. This method first applies a least-squares (LS)
unwrapper to the field which isolates and unwraps the LS component of
the field. Four modulo-2π-equivalent non-LS components are created by
subtracting the LS component from the original field and then restricting the
result to differing ranges. 2π phase jumps known as branch cuts are isolated
to the non-LS components and the different non-LS realizations have differ-
ent branch cut placements. The best placement of branch cuts is determined
by finding the non-LS realization with the lowest normalized cut length
and adding it to the LS component. The result is an unwrapped field which
is modulo-2π-equivalent to the original field while minimizing the effect
of phase cuts on system performance. This variable-range ‘φ LS + φnon−LS’
unwrapper, is found to outperform other unwrappers designed to work in the
presence of branch points at a reasonable computational burden. The effect
of improved unwrapping is demonstrated by comparing the performance of
a system using a fixed-range ‘φLS + φnon−LS’ realization unwrapper against
the variable-range ‘φLS + φnon−LS’ unwrapper in a closed-loop simulation.
For the 0.5 log-amplitude variance turbulence tested, the system Strehl
performance is improved by as much as 41.6 percent at points where fixed-
range ‘φLS + φnon−LS’ unwrappers result in particularly poor branch cut
placement. This significant improvement in previously poorly performing
regions is particularly important for systems such as laser communications
which require minimum Strehl ratios to operate successfully.
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1. Introduction/Background

Adaptive-optics (AO) systems have proven to be very effective at compensating for the effect
of weak atmospheric turbulence.[1] Stronger turbulence in which intensity variation known as
scintillation occurs is more challenging.[2] Significant scintillation can cause branch points
where intensity is zero and phase is undefined.[3] Branch points cause lines of 2π phase dis-
continuity known as branch cuts in the field leading to the branch points.

These unavoidable branch cuts degrade AO system performance when correcting with a con-
tinuous surface deformable mirror due to the inability of the mirror to fit the required discon-
tinuous phase.[4] Cut placement, however, affects the amount of degradation and cuts can be
placed between branch points in many different ways. This paper proposes an effective method
of unwrapping the phase of an optical field which places branch cuts where their negative im-
pact on system performance is minimized.

1.1. Wavefront Sensors

There are many types of wavefront sensors (WFSs), but for strong turbulence conditions and the
associated high levels of scintillation, interferometric sensors such as the self-referencing inter-
ferometer (SRI) are good choices.[5] Regardless of the source, this paper assumes amplitude
and wrapped phase information is available for the field.

1.2. Irrotational and Rotational Fields

The phase of an optical field φTot(x,y) can be divided into irrotational φ Irr(x,y) and rotational
φRot(x,y) components.[2] Under weak turbulence conditions, only the irrotational component
of the phase is present because the total field is irrotational.[2] In the absence of detector noise,
any rotational component is the result of branch points (Sec. 1.3) which are caused by strong
turbulence.

1.3. Branch Points

Branch points are optical phenomena which occur at places of zero amplitude in an optical field.
More specifically, they are defined as places about which a closed integral of phase gradients
is non-zero.[2] In mathematical terms, ∇×F(r) �= 0 where F(r) = ∂φ

∂x i+ ∂φ
∂y j is the gradient of

the scalar function φ(x,y). Thus starting at a point A and integrating phase differential along a
closed path around a branch point back to A yields a different phase than what was started with.
Since the phase at point A has not changed, the integration along the closed path will necessarily
be an integer multiple of 2π . A clockwise integration around a single positive branch point
yields +2π while a negative branch point yields −2π . If multiple branch points are contained
within an integration path, their effects sum with positive branch points cancelling out the
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effects of negative branch points. In principle, integrating phase gradients along a path around
a point is the way the presence of branch points is determined.[3] Throughout this paper, ‘x’
and ‘o’ are used in figures to indicate the presence of positive and negative branch points,
respectively.

1.4. Phase Cuts

A phase cut is a line across which there is an integer multiple of 2π phase discontinuities. In
a sampled phase map, a phase cut is defined as wherever there is more than a π difference in
phase between adjacent samples.

Segmented deformable mirrors (DMs) deal with phase cuts very easily since each pixel in
a segmented DM is independent. Modulo-2π compensation is applied and cuts are essentially
ignored. The phase is not required to be unwrapped prior to implementation on a segmented
DM.

Typically, in the absence of branch cuts, continuous facesheet DMs outperform segmented
DMs because they ramp smoothly from actuator to actuator, better matching the phase correc-
tions needed between sample points. Phase cuts, however, degrade system performance because
the DM cannot change shape abruptly and instead changes smoothly between actuators in at-
tempting to match a phase cut. Regions between samples on either side of a cut are compensated
poorly. As such, it is advantageous to eliminate phase cuts wherever possible and keep them
short and through areas of low illumination when they cannot be eliminated.

Throughout this paper, phase cuts are depicted in figures by lines. The line colors are usually
white but may vary from figure to figure in an effort to keep them distinct from the background.

1.5. Wrapping Cuts

Phase cuts take two forms, wrapping cuts and branch cuts. A wrapping cut is only due to
the field being wrapped and proceeds from one edge of the optical field to another. It can be
eliminated by adding or subtracting an integer multiple of 2π to the field on one side of the
wrapping cut. Cuts which form a closed path within the field are also unwrapping cuts and can
be eliminated similarly by either adding or subtracting an integer multiple of 2π to the interior
or exterior of the cut path. As an example, Fig. 1 depicts a wrapped and unwrapped phase. Note
that the wrapped phase is limited in range to [−π ,π) while the unwrapped phase is not.

(a)

Wrapped Phase

 

 

(b)

Unwrapped Phase
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Fig. 1. (a) Wrapped phase with only wrapping cuts. (b) Unwrapped version of (a). Note
that the unwrapped phase is smooth.
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Wrapped Phase with Branch Points
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Fig. 2. Wrapped Phase with both wrapping and branch cuts. If this phase were to be un-
wrapped, it would not be smooth.
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Poor unwrap with branch points
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Min distance unwrap with branch points
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Fig. 3. Poor unwrap and minimum cut distance unwrap of phase field w/ branch points

1.6. Branch Cuts

Figure 2 shows a phase with both wrapping and branch cuts. Unlike wrapping cuts, branch cuts
do not extend across the entire field (or in a closed path) having at least one end terminating at
a branch point.[6] They either connect branch points of opposite polarity or connect a branch
point with the edge of the optical field (in effect placing a branch point of opposite sign just off
the field at that point). By terminating at a branch point, they compensate for the non-zero curl
of phase differential around the branch point. In a closed path around a single branch point,
the phase differentials integrate to ±2π . As the line integral crosses the branch cut, however,
∓2π is added so that the closed line integral sums to zero as it would if there were not a branch
point within the closed path. Branch cuts can be placed in a variety of ways, all of which will
still compensate for the non-zero curl of branch points in the phase. Two examples of phase
cut placement are shown in Fig. 3. The poor unwrap is created by simply unwrapping the field
from left to right. The minimum cut distance unwrap was manually created to minimize the
length of the branch cuts.
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1.7. Least-Squares Unwrappers

Least-squares (LS) unwrappers are very common methods of estimating the unwrapped phase
of an optical field in AO systems designed for weak atmospheric turbulence.[2] There are two
types, weighted and unweighted.

1.7.1. Unweighted LS Unwrappers

For an N ×N array of phases, an unweighted LS unwrapper is developed as

Gφ = s

GTGφ = GTs

(GTG)−1GTGφ = (GTG)−1GTs

φLS = (GTG)−1GTs,

where G is a 2N(N − 1)×N2 transformation matrix that converts the N 2 vector of phases φ
into a 2N(N−1) vector of phase differentials in the x and y directions s and the inverse notation
is taken to be the pseudo-inverse. In weak turbulence, s is most commonly the phase gradients
provided by a Shack-Hartmann WFS. If actual phases φTot are available, the phase differentials
s are developed as s = W (GφTot) where W () indicates the wrapping operation of limiting the
differentials s to some 2π interval. An important point is that while creating an N 2 ×N2 pseudo
inverse is computationally daunting, the problem is alleviated somewhat by G being sparse and
fixed for a given AO system. Much of the work can be pre-computed a single time rather than
having to be determined in real time during execution.

1.7.2. Weighted LS Unwrappers

Weighted LS unwrappers are sometimes used to minimize noise or emphasize certain parts of a
field. In a weighted LS unwrapper, the slopes are weighted before applying the pseudo-inverse
as

Gφ = s

WGφ = Ws

(WG)TWGφ = (WG)TWs

GTWTWgφ = GTWTWs

GTW2Gφ = GTW2s

(GTW2G)−1GTW2Gφ = (GTW2G)−1GTW2s

φLS = (GTW2G)−1GW2s,

where W is an 2N(N−1)×2N(N−1) diagonal array of weights. It works essentially the same
as an unweighted LS unwrapper, but the pseudo inverse cannot be pre-computed because the
weighting matrix is not typically constant. This makes a weighted LS unwrapper difficult to
implement in real-time systems.

1.7.3. LS Unwrappers and the Hidden Phase

In estimating the phases from the slopes, there is an implicit assumption that the sum of phase
differentials is path independent, or that the field is irrotational. As a result, the phase estimate
of an LS unwrapper is irrotational. The LS unwrapper does not reconstruct the rotational portion
of the phase, which is why the rotational component of the phase is sometimes referred to as
the “hidden phase”.[7] This makes a simple LS unwrapper alone a non-optimal choice when
compensating for strong turbulence.[8, 9]
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1.8. Non-LS Component of the Field

The non-LS component of the field is the difference between the original field and the output
of a LS unwrapper. If the original field is irrotational, the output of the LS unwrapper will be
modulo-2π-equivalent to the original field, and the non-LS component will be non-existent.
If the original field has branch points and is rotational, the effects of those branch points will
be isolated in the non-LS component. As such it is sometimes referred to as the rotational
component.[2] Strictly speaking, the rotational component is not unique[10], so it is referred
to here as the non-LS component, uniquely identifying it as the difference between the original
field and the output of a LS unwrapper. For the purposes of this paper, the non-LS component
will be wrapped to a particular 2π range.

2. Improved Unwrapper

The first step in unwrapping efficiently in the presence of branch points is generating the LS
and non-LS components of the field through the use of an LS unwrapper,

φLS = LS(φTot)
and

φnon−LS = W
(

φTot −LS(φTot)
)

where LS() indicates applying an LS unwrapper operation to the vector of wrapped phases φ Tot

and W () indicates wrapping the phase to some 2π range.

Field intensity overlaid with branch cuts

 

 

0.5
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1.5

2

2.5

Fig. 4. Intensity overlaid by branch cuts using LS unwrapper to eliminate wrapping cuts

Wrapping cuts are eliminated by the LS unwrapper, and branch cuts are isolated in φ non−LS.
Thus total phase φTot adjusted to remove wrapping cuts while still retaining branch cuts can be
determined as

U (φTot) = φLS + φnon−LS, (1)

where U () indicates an unwrapping process which removes wrapping cuts (but not branch
cuts). While removing any wrapping cuts, this unwrapped result is modulo-2π-equivalent to
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Phase overlaid with branch cuts
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Intensity overlaid with branch cuts
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Fig. 5. Poor unwrapping, phase and intensity overlaid by branch cuts

φTot , maintaining both the irrotational and rotational components of the field. This has been
covered in several texts [2] and is a common way of including rotational phase effects in the
AO systems being developed to operate under strong turbulence conditions.[11]

In general this approach is reasonably effective, as shown in Fig. 4. Here the field whose
phases are in Fig. 2 has its wrapping cuts removed by the process depicted in Eq. (1). The
resultant branch cuts are plotted over the intensity (instead of the phase as in previous figures)
to show the effectiveness of the unwrap. In this case the branch cuts are reasonably short and
seem to avoid the areas of high intensity, although they may not be optimal.

While generally effective, this unwrap method sometimes gives less appealing results as
shown in Fig. 5. Here the branch cuts are much longer than they could be and go through areas
of high intensity. Admittedly this is the worst realization encountered in the simulation, but
poor results are all too often encountered.

Since after unwrapping the LS portion of the phase field φ LS is free of phase cuts, the non-LS
portion φNon−LS must be examined in order to reduce the impact of phase cuts. Being wrapped,
φNon−LS is restricted to some 2π range, say [0,2π). If the range is changed to [−π/2,3π/2)
then all the points whose phase is in [3π/2,2π) would have 2π subtracted from them. The
resulting field would be modulo-2π equivalent to the original field, but would have branch cuts
in different positions. The field depicted in Fig. 5 is re-depicted in Fig. 6 alongside unwraps
for the same field with φNon−LS having differing range restrictions. The unwrap with φ Non−LS

restricted to [0,2π) has terrible branch cut placement. The remaining three realizations depicted
are much more reasonable, with the realization created by limiting φ Non−LS to [−π ,π) having
the lowest normalized cut length. It should be noted that the creation of four realizations is
reasonable because the majority of the computational load is in executing the LS unwrapper
which only has to be done once.

2.1. Unwrapping Metric - Normalized Cut Length

Having developed multiple modulo-2π-equivalent phase realizations, it is necessary to compare
different branch cut placements so that the best one can be chosen. Short cuts through regions
of minimal illumination have the least impact on system performance.[6] As such, the metric
used in this work is ‘normalized cut length’ which is the line integral of field intensity along any
phase cuts divided by the average intensity of the field. It is an indication of what proportion of
light in the system is along phase cuts. Since light along branch cuts is erroneously corrected
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(a)

φNon−LS ⊂ [0,2π), norm cut length = 196.9
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(b)

φNon−LS ⊂ [−π/2,3π/2), norm cut length = 6.7
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(c)

φNon−LS ⊂ [−π,π), norm cut length = 0.7
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(d)

φNon−LS ⊂ [−3π/2,π/2), norm cut length = 1.0
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Fig. 6. Branch cuts of four different unwrap realizations

by a continuous facesheet DM, it should be minimized and a shorter normalized cut length is
desired.

For a discretely sampled field, normalized cut length is determined by first isolating the
phase cuts within the field. This can be accomplished by taking the difference between adjacent
pixels first up and down and then side to side. The intensities on either side of the cuts are then
summed and divided by two to account for the average intensity along the cuts. Finally the
result is normalized by dividing by the sum of the field’s intensities.

The advantage of normalized cut length is that it can be computed during system execution
and is highly correlated to system performance. In order to show the correlation of normalized
cut length to system performance, a 256× 256 complex ‘Fine’ field is developed from the
32× 32 field by interpolation from the coarser field. Similarly a 32× 32 array of phases from
an unwrapper is converted into a 256× 256 arrays of phases. This models an idealized DM
whose surface varies smoothly between actuators. The DM model is translated into the complex
domain by û+ iv̂ = Âexp(iφ̂ ) where û and v̂ are the real and imaginary estimates of the field,
Â is the estimated amplitude of the field and φ̂ is the estimated phase of the field. The field-
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estimation Strehl ratio can then be computed as

S =
|

N
∑

a1=1

N
∑

b1=1
Fa1b1E∗

a1b1
|2

N
∑

a2=1

N
∑

b2=1
Fa2b2F∗

a2b2

N
∑

a3=1

N
∑

b3=1
Ea3b3E∗

a3b3

, (2)

where F is the ‘Fine’ field, E is the estimated DM field and ∗ is the conjugation operator.[12]
By developing both the ‘Fine’ field and estimated DM field by interpolating from the same

coarser field, degradations in the field estimation Strehl are isolated solely to the effect of phase
cuts in the field. This allows direct comparison between normalized cut length and the effect of
phase cuts on field estimation Strehl.

Normalized cut length is plotted against field estimation Strehl ratio for the various fields and
unwrapping methods examined during this work in Fig. 7 and has a correlation of −0.9982.
Normalized cut length is shown to be a good measure of the impact of phase cuts on field
estimation Strehl ratio, and thus on system performance.

Fig. 7. Field estimation Strehl versus integrated cut intensity

3. Simulation and Results

In order to test the unwrapper, a simulation was created that isolates and unwraps 32× 32
sections from a 513×513 optical simulation generated test screen. The simulation was run on
two test screens depicting fields with intensity log-amplitude variances of 0.4 and 0.8. Each had
a scaling of 16 pixels per the atmospheric coherence diameter r 0. The log-amplitude variance
of intensity is a measure of the scintillation of the field and a reasonable indication of the
turbulence strength.[13] Both variances reflect strong turbulence which would create branch
points.

For a given field, the 32× 32 window is moved throughout the larger test screen to look at
all possible realizations of the test screen. While correlated, this gives a wide variety (482×
482 = 232,324) of different realizations. Some are benign and all four unwrapped versions have
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effectively placed branch cuts. Others, as shown in Fig. 5 have an unwrapped version where
a cut passes through or close to a region of high intensity. This is certainly an unwrapping
solution to avoid and justifies creating an unwrapper which can choose the best of four unwrap
realizations.

For each of the 232,324 possible realizations, the integrated cut intensity metric is recorded
for the four φnon−LS ranges. The average and maximum score for all realizations is then de-
termined for each of the four ranges. These data show how the unwrapper would perform if
the range was fixed to a particular range. The integrated cut intensity is also recorded for the
φnon−LS range which gives the lowest score. The average and maximum is determined for this
best of four φnon−LS ranges and compared against the average and maximum scores from the
fixed ranges.

The results of the unwrapper using both unweighted and weighted (by field intensity) LS
unwrappers to separate out the rotational component are given in Tables 1 and 2. Compared
to limiting the non-LS component to a single range, the variable-range ‘φ LS + φnon−LS’ mean
normalized cut length is reduced in both cases. Perhaps more importantly, the worst realizations
are avoided in a variable-range ‘φLS +φnon−LS’ unwrapper so that the maximum normalized cut
length is dramatically reduced. The weighted variable-range ‘φ LS + φnon−LS’ unwrapper has
the effect of influencing the LS portion of the field towards the areas of higher intensity. The
non-LS portion of the field is then influenced towards the areas of lower intensity and branch
cuts are forced into darker portions of the field. While a weighted LS unwrapper has the best
performance, the computational cost of a weighted unwrapper is significant (see section 4).

Table 1. Normalized cut lengths for 0.4 log-amplitude variance field

Non-LS component range Avg norm cut length Max norm cut length
Unweighted [0,2π) 7.14 196.9

Results [−π/2,3π/2) 6.65 159.2
[−π ,π) 6.73 140.0

[−3π/2,π/2) 7.00 173.0
best of four realizations 1.13 37.6

Weighted [0,2π) 1.41 88.6
Results [−π/2,3π/2) 1.35 90.9

[−π ,π) 1.40 93.3
[−3π/2,π/2) 1.44 85.7

best of four realizations 0.62 16.9

Table 2. Normalized cut lengths for 0.8 log-amplitude variance field

Non-LS component range Avg norm cut length Max norm cut length
Unweighted [0,2π) 11.58 150.6

Results [−π/2,3π/2) 11.57 161.4
[−π ,π) 11.42 136.5

[−3π/2,π/2) 11.51 169.6
best of four realizations 3.0 43.8

Weighted [0,2π) 3.10 94.3
Results [−π/2,3π/2) 3.05 108.7

[−π ,π) 2.95 103.7
[−3π/2,π/2) 2.98 110.6

best of four realizations 1.43 17.4
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4. Comparison to Other Unwrappers

In order to evaluate the worth of the variable-range ‘φ LS + φnon−LS’ method, it was compared
to other unwrappers designed to work with branch points. The other unwrappers are the fixed-
range ‘φLS + φnon−LS’ unwrap, Goldstein’s branch cut placement unwrap method[2], Wave-
prop’s xphase[14], and Fried’s smoothphase.[4]

The fixed-range ‘φLS +φnon−LS’ unwrapper is the same as the variable-range ‘φLS +φnon−LS’
but only develops a single unwrap realization instead of choosing the best of four realizations.
Goldstein’s branch cut placement method attempts to determine minimum length branch cuts
that connect branch points.[2] Xphase is a Matlab unwrapping function from the AOTools Mat-
lab toolbox. It is designed to work with fields containing branch points and attempt to place
branch cuts in low intensity regions of the field.[14] It should be noted that xphase required the
32×32 field to be zero-padded to 64×64 in order to work properly. Fried’s smoothphase un-
wrapper separates the field into rotational and irrotational components by first determining the
rotational component (after balancing the number of branch points by adding additional branch
points along the edge of the field as necessary). Once separated, the irrotational component can
be unwrapped and then recombined with the rotational component of the field.[4]

The comparison between unwrapping methods is given in Tables 3 and 4 for log-amplitude
variances of 0.4 and 0.8, respectively. Execution time is the time needed to execute an unwrap-
per in Matlab on a Pentium 4 CPU (3.2GHz) with 2.0 GB of RAM over the 230,000+ frames
tested. While execution times may depend on Matlab implementation, indications from this
simulation are that the variable-range ‘φLS +φnon−LS’ unwrapper using an unweighted LS gives
the best performance at a reasonable computation burden. The variable-range ‘φ LS + φnon−LS’
unwrapper using a weighted LS improves performance still more, but at an unreasonable com-
putational burden. AOTools xphase unwrapper gave slightly improved results compared to a
variable-range ‘φLS + φnon−LS’ using an unweighted LS unwrapper, but at over six times the
computational burden.

Table 3. Normalized cut lengths from various unwrappers, 0.4 log-amplitude variance field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 7.14 196.9 10 min
Unwtd φLS+var-rng φnon−LS 1.13 37.6 16 min
Wtd φLS+fxd-rng φnon−LS 1.41 88.6 23.6 hrs
Wtd φLS+var-rng φnon−LS 0.62 16.9 23.7 hrs

Goldstein 1.48 71.9 7.5 hrs
AOTools xphase 0.85 37.6 107.8 min

Fried Smoothphase 4.11 175.5 13 min

Table 4. Normalized cut lengths from various unwrappers, 0.8 log-amplitude variance field

Unwrapping Method Avg norm cut lngth Max norm cut lngth Execution time
Unwtd φLS+fxd-rng φnon−LS 11.58 150.6 10 min
Unwtd φLS+var-rng φnon−LS 2.98 43.8 16 min
Wtd φLS+fxd-rng φnon−LS 3.1 94.3 23.6 hrs
Wtd φLS+var-rng φnon−LS 1.43 17.4 23.7 hrs

Goldstein 3.27 84.7 7.6 hrs
AOTools xphase 1.83 38.0 110 min

Fried Smoothphase 9.33 182.7 19 min

#92309 - $15.00 USD Received 30 Jan 2008; revised 23 Apr 2008; accepted 23 Apr 2008; published 1 May 2008

(C) 2008 OSA 12 May 2008 / Vol. 16,  No. 10 / OPTICS EXPRESS  6995



5. Impact on System Performance

The purpose of developing an improved unwrapper is to improve the performance of a closed-
loop AO system encountering strong turbulence. As such, a 1000 frame closed-loop AO simu-
lation was performed under 0.5 log-amplitude variance strong turbulence in order to compare
the effect of the unwrapping on system performance.

With the exception of the log-amplitude variance, simulation conditions were purposely be-
nign in order to isolate the unwrapping as the dominate factor on system performance. The
remaining simulation conditions were r0 = 4DSA where DSA is the diameter of a sub-aperture,
sample rate = 223 fG where fG is the Greenwood frequency of the atmosphere, average SNR
200. The simulation used a leak-free integrator controlled feedback with a error signal gain of
0.4. The control law was applied immediately before the unwrapper, whose output then went
to the DM.
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Fig. 8. Comparison of closed-loop AO performance between variable and fixed φnon−LS
range ‘φLS +φnon−LS’ unwrappers.

System performance using fixed φnon−LS range ‘φLS + φnon−LS’ unwrappers was compared
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against using a variable φnon−LS range ‘φLS + φnon−LS’ unwrapper. Strehl ratio performance of
the various simulations are plotted in Figs. 8 and shows how different fixed ranges have different
periods of reduced performance. Average results are tabulated in table 5 as well as average and
maximum improvements when using a ‘best of four’ unwrapper. The new unwrapper improved
the average Strehl ratio performance between 3.3% and 7.6% against the four fixed φ non−LS

range unwrappers with considerably less variability. The maximum improvement of the new
unwrapper against the four fixed φnon−LS range unwrappers was more dramatic, ranging from
23.0% to 41.6%.

Table 5. Average Strehl results for 1000 frame simulation

‘Best of four’ ‘Best of four’
φnon−LS range mean Strehl ratio avg improvement max improvement

[0,2π) 0.5956 7.6% 29.8%
[−π/2,3π/2) 0.6104 5.0% 41.6%

[−π ,π) 0.6198 3.4% 23.0%
[−3π/2,π/2) 0.6024 6.3% 33.4%
best of four 0.6406 N/A N/A
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Fig. 9. CDF comparisons between variable range φnon−LS and fixed range φnon−LS unwrap-
pers

As the performance of a fixed-range ‘φLS + φnon−LS’ unwrapper is inconsistent, the aver-
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age improvement of the variable-range ‘φLS + φnon−LS’ unwrapper over a fixed-range ‘φLS +
φnon−LS’ unwrapper is difficult to determine. In order to develop an average improvement, the
simulations were extended to 10,000 frames to provide each fixed-range of the ‘φ LS + φnon−LS’
unwrappers with areas of both good and bad performance. The results of the simulation were
put into histograms and then summed to form cumulative distribution functions (CDFs) shown
in Fig. 9. The CDFs show how the variable range φnon−LS unwrapper improves performance.
The CDF of the variable range φnon−LS unwrapper is shifted to the right when compared to the
CDF of the fixed range φnon−LS unwrapper. Not only does this indicate improved average per-
formance, but indicates more significant improvement for systems such as laser communication
where performance thresholds which inhibit operation below a certain Strehl ratio.

6. Conclusion

In the presence of branch points, unwrapping the phase is a difficult problem. Isolating the
rotational component by using a LS unwrapper to separate the field into its LS and non-LS
components seems an excellent approach. The wrapping phase cuts of the irrotational com-
ponent are automatically eliminated by the LS unwrapper. Altering the range of the rotational
component is a simple and effective way of varying the placement of the branch cuts associated
with the rotational phase component, and computing the normalized cut length is an effective
way of comparing the effectiveness of branch cut placements. Choosing the best of four branch
cut realizations not only improves average cut placement but, perhaps more significantly, elimi-
nates the worst cut placements which would significantly degrade AO system performance. The
improved unwrapping eliminates regions of degraded performance where previous unwrappers
yielded poor branch cut placements. The reduced areas of poor performance not only improves
average performance, but may significantly improve systems such as laser communications
where falling below a performance threshold will cause signal fading.

Disclaimer

The opinions and views expressed by the authors are not necessarily those of the Department
of Defense or the United States Air Force.
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