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PAPER

Near-field effects on partially coherent light scattered by an aperture

MiloWHyde IV andMichael JHavrilla
Air Force Institute of Technology, 2950HobsonWay, Dayton,OH, 45433,United States of America

E-mail:milo.hyde@us.af.mil

Keywords: coherence, diffraction, electromagnetics,method ofmoments, physical optics, scattering, statistical optics

Abstract
We investigate how the nearfield affects partially coherent light scattered from an aperture in an
opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they
affect spatial coherence is well documented.Here, we consider other near-field effects thatmight
impact spatial coherence.We do this by examining the statistics of the near-zone field scattered from
an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons.
We derive the near-field statistics (in particular, cross-spectral density functions) by applying
electromagnetic equivalence theorems and theMethod ofMoments.We find, even in the absence of
surface plasmons, that near-field physics can affect the coherence of the scatteredfield. The analysis
andfindings presented herein complement the existing coherence-related surface plasmons literature,
and couldfind use in the design of photonic devices built to engineer spatial coherence.

1. Introduction

Motivated by the discovery of directional thermal emission(DTE), near-field effects on coherence have been
studied for the past 30 years. In 1988, thefirst experimental results of directional emission from a heated grating
were published [1, 2]. Since that time, DTEhas been linked both theoretically and experimentally to the
excitation of surface plasmons [3–6], and recently, fabricated structures designed to directionally emit thermal
light at specificwavelengths have been demonstrated [7–10].

Directionality of a source implies spatial coherence; the existence ofDTEproves that near-field physics can
have a significant impact on source coherence. In the case ofDTE, this impact is profound in that an initially
incoherent source (a thermal source) is transformed into a partially coherent one by the excitation of surface
plasmons interacting withwavelength-scale structures.

Realizing the potential of this transformation, several authors have proposed using surface plasmons and
wavelength-scale structures to precisely control spatial coherence for reasons other than just spectral or
directional emission [11–17]. These plasmonicmethodswould permit coherencemanipulation at the nano- or
micrometer scale—coherence control on amicrochip—and be superior in terms of size, weight, power, and
complexity to themore traditional approaches for coherence control [18–23]. Even at longer wavelengths,
where true surface plasmons are not excited, researchers have fabricatedmaterials to excite so-called ‘spoof
plasmons’ [24–27]. Although these spoof plasmons have not been used to affect spatial coherence to date, in
principal, they could be used for that purpose.

With the link between surface plasmons and coherencewell established, we seek to answerwhether there are
other near-field phenomena (perhaps secondary or tertiary effects) that can impact spatial coherence.We do this
by examining the scattering of a partially coherent wave from an aperture in an infinite perfect electric conductor
(PEC) plane—a structure that does not support surface plasmons.We simplify the analysis and computational
burden by assuming a two-dimensional(2D), z-invariant geometry; applying our results to a three-
dimensional(3D) aperture geometry is straightforward.

In this paper, we derive the transversemagnetic (TM) and transverse electric (TE) expressions for the cross-
spectral density (CSD) function [18, 28] in the aperture using electromagnetic (EM) theory and the commonly
used physical optics(PO) approximation [29–31]. In the former case, we apply Love’s equivalence theorem and
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image theory [29–31], and enforce the continuity of transverse aperture fields to derive amagnetic field integral
equation (MFIE) for the unknown equivalentmagnetic current (proportional to the electric field in the
aperture). Then, using theMethod ofMoments(MoM) [30, 32, 33], we numerically solve for theCSDof this
current.We compare and contrast the exact EMandPOnormalizedCSD functions, also known as the spectral
degrees of coherence (SDoCs) [18, 28], and discuss their physical significance.

Wefind that, even in the absence of surface plasmons, the nearfield does affect spatial coherence, and its
impact on the far-zone intensity (or equivalently, the spectral density whenworking in the space-frequency
domain [28]) ismost pronounced at large, nonparaxial, scattering angles.We alsofind, even for relatively large
apertures and depending on the incident field’s SDoC, that near-field effects can still be observed.

The analysis and findings presented in this paper complement the existing near-field coherence research
involving surface plasmons, andwill be useful in future photonic devices thatmanipulate or control spatial
coherence.

2. Analysis

2.1. Aperture geometry and assumptions
Figure 1 depicts the scattering geometry considered in this paper. A stochastic field, incident from the left,
illuminates a slit of width d in an infinitesimally thin PEC (s  ¥) plane immersed in a linear, homogeneous,
and isotropicmediumwith permittivity ε and permeabilityμ.We assume that the scatterer and the incident field
are z-invariant. As a result,Maxwell’s equations decouple into independent TMandTE sets, and the general 3D
problembecomes 2D.We observe the resulting scattered field in the slit at y=0 and in the far-zone as a
function off.

We note that the incident field shown infigure 1 should be interpreted as a single realization of awhole
ensemble offields, and hence, the scatteredfield, resulting from that incident field, should be interpreted in the
samemanner.We infer physical behavior of both the incident and scattered fields from statisticalmoments
taken over thewhole ensemble of possiblefields.

Sincewe are concernedwith coherence, we require only the first and secondmoments of thefields, better
known as themean andCSD function, respectively. Tofind thesemoments for the scattered field, wemust know
the incident field’smean andCSD function.We assume that the former is zero and hence, themean scattered
field is also zero. For the latter, we assume a Schell-model [18, 28, 34] form for the incident field CSD function,
and further, that themean intensity of the incident field fully and uniformly illuminates the slit. These two
assumptions result in aCSD function of the form

E x E x W x x I x x, , 1inc
1

inc
2

inc
1 2 0 1 2* gá ñ = = -a a aa( ) ( ) ( ) ( ) ( )

whereα=x, z for TMandTEpolarizations, respectively, I0 is the average intensity, and γ is the SDoC
[18, 28, 34].

Figure 1.Aperture in a PEC (s  ¥) plane.
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2.2.MFIEs
Returning briefly tofigure 1, by applying Love’s equivalence theorem and image theory [29–31], we transform
the aperture geometry into an equivalent one, inwhich amagnetic current radiates in unbounded space.
This current is unknown, andwe derive an equation for in terms of the incident field by enforcing the
continuity of the transversemagnetic field in the slit, namely,

n H n Fx k x x d d, 0
1

j
, 0 2, 2 , 2inc 2

wme
- ´ = ´ +  Î -ˆ ( ) ˆ ( ·) ( ) [ ] ( )

where n̂ is the unit normal to the slit (ŷ here), k w me= is thewavenumber,ω is the radian frequency, and
∇is the del operator.

The remaining symbols in equation (2) are H inc, which is the incidentmagnetic field, and F , which is the
electric vector potential [29, 30]. F contains and is given by the integral expression

F x x
H k x x

x, 0 2
j4

d . 3
d

d

2

2
0
2

ò e= ¢
- ¢

¢
-

( ) [ ( )] ( ∣ ∣) ( )
( )

Note that is related to the electric field in the slit by

n E. 4 = - ´ˆ ( )

Wewill return to this simple relationwhenwe present the PO solutions.
For TMpolarization, H inc and are z directed, and equation (2) simplifies to

k
E x x H k x x x

2
d . 5x

d

d
inc

2

2
TM

0
2ò= ¢ - ¢ ¢

-
( ) ( ) ( ∣ ∣) ( )( )

In the case of TE polarization, H inc and are x directed, and equation (2) becomes

kE x k
x

x H k x x x2 d . 6z
d

d
inc 2

2

2 2

2
TE

0
2ò= +

¶
¶

¢ - ¢ ¢
-

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( ∣ ∣) ( )( )

Note that the condition on x specified in equation (2) applies to these equations as well.We solve these two
MFIEs for their respective in the next section.

2.3.MoMsolutions
Thefirst step in theMoM is to expand in a set of basis functions. These basis functions shouldmatch, as
closely as possible, the physical behavior of the current. After expansion, the resulting integral equation is ‘tested’
by taking the inner product of both sides of the equationwith another set of functions known as testing
functions. For accurate results, the combination of basis and testing functionsmust overcome the source-point
singularity in theGreen’s function (Hankel function) andmake the expressions on the right-hand sides of
equations (5) and (6) integrable.

We beginwith the TMpolarizationMFIE given in equation (5). Being in the zdirection, TM goes like
x1 at the slit edges [35, 36], and theHankel function, at the source-point singularity, goes like xln ( ). Taking

these two factors into account, we choose rectangular basis and delta testing functions to discretize equation (5)
in a procedure called pointmatching [30, 33, 37]. Equation (5) becomes

k
E x m

x x

w
H k x x x

2
rect d , 7x j

i
i

d

d
i

j
inc TM

2

2

0
2òå=

¢ -
- ¢ ¢

-

⎛
⎝⎜

⎞
⎠⎟( ) ( ∣ ∣) ( )( )

where mi
TM is the unknown complexweight of the ith basis function, xi is the center of the ith rectangular basis

function,w is thewidth of a basis function (assumed to have equal widths), xj is the location of the jth delta
testing function, and xrect( ) is [38]

x
x

xrect
1 1 2

1 2 1 2

0 otherwise

. 8=
<
=

⎧
⎨⎪
⎩⎪

( )
∣ ∣
∣ ∣ ( )

Note that the delta testing functions are located at the centers of the rectangular basis functions.
We nowproceed to the TE polarizationMFIE given in equation (6). The x-directed TE must go to zero at

the slit edges and does so like x [35, 36]. Although theHankel function at the source-point singularity behaves
like xln ( ), the derivatives on the outside of the integral require a higher-order combination of basis and testing
functions than in the TMcase tomake the expression integrable.

Using the symmetry of theGreen’s function and some basic calculus, we redistribute one of the derivatives to
operate on TE yielding
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kE x k x H k x x x
x x

x H k x x x2 d d . 9z
d

d

d

d
inc 2

2

2
TE

0
2

2

2
TE

0
2 ò ò= ¢ - ¢ ¢ +

¶
¶

¶
¶ ¢

¢ - ¢ ¢
- -

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ∣ ∣) ( ) ( ∣ ∣) ( )( ) ( )

Wenow choose triangular basis functions that span two discretized aperture segments, and rectangular testing
functions that extend from the center of one segment to the center of an adjacent segment [33]. Note by choosing
triangular basis functions, we ensure that TE goes to zero at the slit edges. Substituting in these functions and
simplifying produces

k
x x

w
E x x

m k
x x

w

x x

w
H k x x x x

w

x x

w
H k x x x

x x

w
H k x x x

x x

w
H k x x x

x x

w
H k x x x

2 rect d

rect d d

1
rect d

rect d

rect d
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d
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d
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d
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d
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d
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d
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where xL( ) is [38]

x
x x1 1

0 otherwise
. 11

L = -⎧⎨⎩( ) ∣ ∣ ∣ ∣ ( )

Thefinal form for both the TMandTEdiscretizedMFIEs—equations (7) and(10), respectively—is

b mZ . 12= ( )

Here, b is a vector containing the incident field in the aperture, m is a vector containing the unknownbasis
functionweights and physically represents themagnetic current, and Z is the impedancematrix, which
physicallymodels how the field radiated from a current element affects or couples to every other element. Since
Z contains all the near-zone interactions of the aperturefield, it is instrumental in determining how and towhat
extent the nearfield affects spatial coherence.Wewill return to Z in a later section.

Lastly, the far-zone electric field radiated by these currents is

E
z

k k
w

k m kx

k m kx

j

2

exp j sinc cos exp j cos TM

sin sinc cos exp j cos TE
, 13

w

i i i

w

i i i

MoM 2
TM

2
2

TE

å

å
r

f

p
r

r

f f

f f f
=

-
⎧
⎨⎪
⎩⎪

( )
( )

( ) ( ) ˆ ( )

ˆ ( )
( )

where x yx yr = +ˆ ˆ and x x xsinc sin=( ) ( ) .

2.4. PO solutions
Here, we briefly present the PO solutions [29–31, 38] to the aperture problemdepicted infigure 1.We do so
because the PO approximation is commonly used in Fourier and statistical optics to predict the scattering (or
diffraction patterns) from apertures in opaque screens [34, 38]. It is well known that the PO approximation
returns inaccurate results for wavelength-scale apertures [29–31]. Later, we show that it also returns inaccurate
results for spatially incoherent incident fields, regardless of aperture size.

Returning to equation (4), the PO solution assumes that the aperture field is approximately the incident field,
namely,

n E . 14PO inc » = - ´ˆ ( )

With this approximate expression for the current, it is simple to derive relations for the TMandTE far-zone
electric fields:

E

z

k k
E x kx x

E x kx x

j

2

exp j
exp j cos d TM

sin exp j cos d TE

. 15
d

d

x

d

d

z

PO 2

2
inc

2

2
inc

ò

ò
r

f

p
r

r

f

f f
=

-
- ¢ ¢ ¢

¢ ¢ ¢

-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( ) ( )
ˆ ( ) ( )

ˆ ( ) ( )
( )
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2.5. CSD functions, SDoCs, and far-zone spectral densities
In this section, we derive relations for theCSD functions and SDoCs of the near-zoneMoMandPOfields. These
second-order statisticalmoments showhow the near-zone affects the coherence of the scattered field. To
examine how these near-field coherence effects impact the far-zone, we alsofind theMoMandPO far-zone
spectral densities (SDs). Althoughwe dofind relations for theMoM-based field statistics, these equations are in
terms of the impedancematrix Z and therefore, numerical in nature.

Referring back to equation (12), we easilyfind the currents by

m bZ . 161= - ( )

TheCSD function of m is found bymultiplying (on the right) both sides of equation (16) by m†, where †is the
conjugate transpose, and then taking the expectation (ensemble average), namely,

mm bbW Z Z , 17m
1 1á ñ = = á ñ- -( ) ( )† † †

where themoment bbá ñ† is the discretizedCSD function of the incident field and equal to

bb
x x

k w I t x x wt t

TM

4 d TE
. 18

I

k j j

j j

4

2 2
0

1

1

0
2 1 2

1 2ò

g

g
á ñ =

-

L - -
-

⎧
⎨⎪

⎩⎪
( )

( ) [( ) ]
( )†

The SDoCof the currents, which is a directmeasure of spatial coherence, is

W

W Wdiag diag
, 19

m
m

m m

g =
( )[ ( )]

( )
†

where Xdiag( ) returns the diagonal elements of X as a vector. TheMoM far-zone SD is found by taking the
expectation of themagnitude squared of equation (13):

E S

kw k m m k x x

k m m k x x2

sinc cos exp j cos TM

sin sinc cos exp j cos TE,
20

w

i j i j i j

w

i j i j i j

MoM 2 MoM

2
2

2 ,
TM TM

2 4
2 ,

TE TE

*

*

å

å

r r

pr

f f

f f f

á ñ =

=
á ñ -

á ñ -

⎧
⎨⎪
⎩⎪

( )
( )

∣ ( )∣ ( )

[ ( ) ]

[ ( ) ]
( )

where themoments in equation (20) are the TMandTE current CSD functions given in equation (17).
For the PO approximation, the CSD function of the currents is found by taking the autocorrelation of

equation (14), which is trivially equal to equation (1); the SDoCof the PO currents is therefore γ.We derive the
PO far-zone SDby computing the secondmoment of equation (15), namely,

E S

k E x E x k x x x x

E x E x k x x x x2

exp j cos d d TM

sin exp j cos d d TE
. 21

d

d
x x

d

d
z z

PO 2 PO

2

2 inc
1

inc
2 1 2 1 2

2
2

2 inc
1

inc
2 1 2 1 2

*

*

r r

pr

f

f f
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=
á ¢ ¢ ñ ¢ - ¢ ¢ ¢

á ¢ ¢ ñ ¢ - ¢ ¢ ¢

-

-

⎧
⎨⎪

⎩⎪
∬

∬
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( )

Substituting in equation (1) and simplifying produces

S
kI

d
d

t
k

t t
2

sinc 2
2

cos

2
d

1 TM
sin TE

, 22PO 0 2 2
2òr

pr
p g

f
p f= -

-¥

¥
⎜ ⎟ ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎧⎨⎩( ) ˜ ( )

where g̃ is the Fourier transformof γ, i.e.,

f x fx xexp j2 d . 23òg g p= -
-¥

¥
˜ ( ) ( ) ( ) ( )

The bracketed function in the integrand is the Fourier transformof the aperture autocorrelation function  .
The far-zone POSD is therefore proportional to the convolution of the Fourier transforms of  and γ, and
physically is the coherent diffraction patternfiltered or smoothed by g̃ [34, 39, 40].

3.Discussion

Having derived the requisite statisticalmoments, we nowdiscuss their physical significance. Referring back to
equations (17) and(19), wefirst note that in general, the CSD function and SDoCof the currents—or
equivalently, the nearfield via equation (4)—are not equal to those of the incident field. This stands in contrast
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to the POCSD function and SDoC,which are equal to those of the incident field. These statements are true
regardless of aperture size.

The fact that theMoMCSD function and SDoCdiffer from the commonly used PO statistics is not that
surprising—even in the absence of surface plasmons.What trulymatters is whether these differences give rise to
observable effects. To begin addressing this, we start with an approximate, analytically simplemodel for a
spatially incoherent incident field, i.e.,

W x x I x x, , 24inc
1 2 0 1 2d= -( ) ( ) ( )

where xd ( ) is theDirac delta function [28, 34]. The discretized incident field CSD function bbá ñ† , given in
equation (18), is proportional to the identitymatrix I, and Wm simplifies to

W Z Z . 25m
1µ -( ) ( )†

The POCSD function is equal to equation (24).We note that the incoherent CSD function in equation (24)
cannot be represented exactly by the discrete bbá ñ† , which has an equivalent width equal to that of a testing
function, orw.

Figure 2 shows the TMandTE SDoCmagnitudes corresponding to the discrete CSD function in
equation (25) for several values of the aperture width d. Thefigure is organized into two columns, where the first
column shows the TM

m
g∣ ∣and the second column shows the TE

m
g∣ ∣. Thefirst 3 rows of figure 2 show the full

2D ;
m

g∣ ∣ row 4 shows the corresponding 1D cuts through
m

g∣ ∣with x2=0. To compute Z, we discretized the
TMandTE aperture currents usingw=λ/50 segments.

It is quite clear from figure 2 that the impact of the near field on coherence ismost pronounced in the TE
polarization. This is due to the direction of the TE current or aperture field, which is oriented normal to the
aperture edge. By visualizing the TE current as numerous tinymagnetic dipole antennas placed end to end, we
see physically that this results in significant near-field coupling among ‘adjacent’ dipoles. Figure 2(h) shows that
thewidths of the SDoCmagnitudes (distances between the first zeros) areλ/2.Wenote, however, that there is
significant residual coherence for separations beyondλ/2 extending severalλ as seen infigures 2(d) and(f).

Figure 2.TMandTE SDoCmagnitudeswith an incoherent incident field (equation (24))—(a)TM d 1
m

g l=∣ ∣ , (b)TE
d 1

m
g l=∣ ∣ , (c)TM d 5

m
g l=∣ ∣ , (d)TE d 5

m
g l=∣ ∣ , (e)TM d 10

m
g l=∣ ∣ , (f)TE d 10

m
g l=∣ ∣ , (g) 1D cuts throughTM

m
g∣ ∣

with x2=0, and (h) 1D cuts throughTE
m

g∣ ∣with x2=0.
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On the other hand, the near zone has little affect onTMfields. TheTMcurrent is oriented parallel to the
aperture edge in the infinite, or invariant direction. In this case, the tinymagnetic dipole antennas are placed side
by side, resulting in negligible coupling between nearby antennas. Figure 2(g) supports this physical picture,
showing that thewidths of the SDoCmagnitudes are approximatelyλ/10 and independent of d.

These findings are easily generalized to 3Dproblems. For instance, assuming a dx×dy rectangular aperture
in the x-y plane, the ‘TMpolarization’ scenario applies to the x- and y-directed currents parallel to the aperture
edges at y=±dy/2 and x=±dx/2, respectively. The TE scenario applies to the x- and y-directed currents
normal to the aperture edges at x=±dx/2 and y=±dy/2, respectively. Likewise, for a circular aperture in the
x-y plane, the TMandTE scenarios apply to thef- and ρ-directed currents, respectively.

To investigate how the near-field coherence phenomena shown infigure 2 impact the far zone, figure 3
shows theMoMandPO far-zone SDswith an incoherent incident field. Like figures 2, 3 is organized into left and
right columns, which show the TMandTE SDs, respectively. Row 1 shows SMoM and SPO on aCartesian grid;
row 2 shows SMoM and SPO on amore physical, polar grid. All SDs are plotted in decibels (dB).

Here, we see differences in theMoMandPO far-zone SDs for both polarizations. Because the PO current
CSD functionmirrors that of the incident field, SPO is featureless showing no sign of the aperture. In the TE case,
it varies withf because of the sin2f in equation (22). Although SMoM and SPO differ for both polarizations, the
differences aremuchmore pronounced in the TE case, especially at large observation angles wherewe observe
directional scattering.We also see partial constructive and destructive interference (ripples) in SMoM in
figure 3(b). Since the incident field is incoherent, these telltale signs of (partial) spatial coherencemust be due to
near-field effects (seefigure 2).We do not observe any interference phenomena in SPO or TM SMoM.

Figures 2 and 3 showunequivocally that the near-fieldmost strongly affects coherence in the TE
polarization.We therefore focus on the TE case for the remainder of this paper.

We now consider amore realistic incident field CSD function than equation (24), namely,

W x x I
k

x x, sinc , 26inc
1 2 0 1 2

b
= -

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

whereβ>0 is the coherencewidth (in units of waves) of the incident field.We note that the aboveCSD function
withβ=1 is consistent with those of blackbody or Lambertian radiators [28], and therefore, could be
considered a ‘natural’ spatially incoherent source.

Figure 4 shows the normalized TEnear-field SDs (secondmoment of the currents), the 1D cuts through the
SDoCmagnitudes (x2=0), and the corresponding SMoM and SPO in dB on polar grids for differentβ.We
assumed d=10λ and discretized the TE current usingw=λ/50 segments.

The results in figure 4 show, not surprisingly, that the PO approximation improves (agrees better with the
correspondingMoMresult) asβ increases, or equivalently, as the incident field becomesmore spatially

Figure 3.MoMandPO far-zone SDs in dBwith an incoherent incident field (equation (24)) and d 1 , 5 , and 10l l l= —(a)TM ρ S
on aCartesian grid, (b)TE ρ S on aCartesian grid, (c)TM ρ S on a polar grid, and (d)TE ρ S on a polar grid.
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coherent. Startingwith the current SD results (figures 4(a) and (b)), whenβ=1, theMoM 2á ñ∣ ∣ oscillates
with a period equal toλ/2. The periods of these oscillations lengthen asβ increases eventually settling atλ in the
coherent limit.With the exception ofβ=1, theMoM 2á ñ∣ ∣ fluctuates around the PO result, which is always
unity.

For the SDoCmagnitude results (figures 4(c) and (d)), there is good agreement between theMoMandPO

m
g∣ ∣except whenβ=1, which is themost interesting case.While thewidth of theβ=1MoM

m
g∣ ∣ is

approximately equal to the POSDoCmagnitude (a xsinc( ) function, see equation (26)), the ‘side lobes’ are
significantly higher for theMoM

m
g∣ ∣. This physicallymeans that the scattered field is spatiallymore coherent

than predicted by the commonly used PO approximation.
Lastly, figures 4(e) and (f) show the far-zone SD results, where, again, we observe significant differences

between SMoM and SPOwhenβ=1. Like the SD results infigure 3, these differences aremost noticeable at large
scattering angles.

We note here that d=10λ, which is large enough for the PO approximation to be accurate (see theβ=20
results infigure 4(f)). Theβ=1 results infigure 4 show that the PO approximation gives nonphysical results for
incoherent incident fields. This finding is independent of aperture size and a key result in this paper.

4. Young’s experiment

In the previous section, we showed and explained that because of the direction of the TE current, significant
near-field coupling occurs, generally resulting in an increase in spatial coherence. Here, we investigate this
phenomenon further using a two-slit geometry, i.e., Thomas Young’s experiment [28, 34]. The purpose is to
observe interference of the light emitted from the two slits when illuminated by a spatially incoherent TEfield.
The two-slit geometry is similar to that depicted infigure 1—the difference being that there are now two
apertures (ofwidth d) centered on the origin and spacedD apart (whenmeasured from center to center).

TheMoMCSDand SDoC are still, in general, given by equations (17) and(19); however, the TEMFIE is
now a systemof coupledMFIEs in terms of the currents in slits1 and2:

Figure 4.MoMandPOTEnear-zone SDs, SDoCmagnitudes, and far-zone SDs for 1, 2, 5, 10, and 20b = , and d=10λ—(a)
2á ñ∣ ∣ for 1 and 2;b = (b) 2á ñ∣ ∣ for 5, 10, and 20;b = (c)

m
g∣ ∣with x2=0 for 1 and 2;b = (d)

m
g∣ ∣with x2=0 for

5, 10, and 20;b = (e) ρ S in dB on a polar grid for 1 and 2;b = and (f) ρ S in dB on a polar grid for 5, 10, and 20b = .
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where S D d D d2 2, 2 21 = - - - +[ ] and S D d D d2 2, 2 22 = - +[ ]. The same triangular basis
and rectangular testing functions that were used in the single aperture problem are used here as well. Since the
analysis is very similar to that presented in section 2.3, we omit the details for the sake of brevity. TheMoM far-

Figure 5.MoMandPO SDoCmagnitudes for an incident fieldCSD function given by equation (26)withβ=1 and
D d d1.1 5.5 , 1.4 7l l= = = , and d2 10l= —(a)MoM D 5.5

m
g l=∣ ∣ , (b)PO D 5.5

m
g l=∣ ∣ , (c)MoM D 7

m
g l=∣ ∣ , (d)PO

D 7
m

g l=∣ ∣ , (e)MoM D 10
m

g l=∣ ∣ , and (f)PO D 10
m

g l=∣ ∣ .

Figure 6.MoMandPO far-zone full, coherent, and incoherent SDs for an incident field CSD function given by equation (26)with
β=1 and D d d1.1 5.5 , 1.4 7l l= = = , and 2d=10λ—(a)D=5.5λ, (b)D=7λ, and (c)D=10λ.
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zone SD is easily found by generalizing equation (13) and becomes
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where the superscripts ‘i’ and ‘c’ stand for incoherent and coherent, respectively. The incoherent contribution to
the SD SMoM,i contains the self terms, i.e., contains the autocorrelations of the currents in slits1 and2. The
coherent contribution SMoM,c contains the coupling terms, viz., the cross correlations of the currents in slits1
and2. Themagnitudes of these cross correlations (they are equal) determine towhat extent the light emitted
fromone slit interferes with the light emitted from the other.

The POCSD and SDoCmirror those of the incident field. Like theMoM far-zone SD, SPO is easily derived by
generalizing equation (22), namely,
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The incoherent and coherent terms of SPO are
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Figure 5 shows the full 2DMoMandPOSDoCmagnitudes for several values ofD. Thefirst column of
images in figure 5 shows theMoM ;

m
g∣ ∣ the second column shows the POSDoCmagnitudes. The x and y tick

marks ( 2.75, 3.5, and 5   ) demark the centers of slits 1 and 2, respectively. Figure 6 shows the
corresponding SMoM and SPO, plus their incoherent and coherent contributions. Here, we assumed the slits were
d=5λ, the currents were discretized usingw=λ/50 segments, and the incident field CSD functionwas given
by equation (26)withβ=1.

The SDoCmagnitudes infigure 5 are block 2×2, with the off-diagonal blocks physically showing how
much one slit coherently couples to the other. As physically expected, the amplitudes of these blocks decrease as
D increases. In addition, one notices that the off-diagonal block amplitudes for theMoM

m
g∣ ∣are significantly

higher than the corresponding POSDoCmagnitudes, which are veryweak. Thismeans that, although
illuminated by a spatially incoherent field, the light emitted from the two slits is actually partially coherent, and
near-field physics are responsible for the transformation.

Figure 6 shows the extent towhich coherent near-field coupling is observable in the far zone. For all values of
D, there is a coherent contribution to SMoMwhich causes observable (in some cases,minor) differences between
SMoM and SMoM,i located predominately at large scattering angles. As physically expected, these differences are
most noticeable whenD is the smallest (see figure 6(a)).We observe no discernible differences between SPO

and SPO,i.

5. Conclusion

In this paper, we studied how the nearfield affects spatial coherence considering phenomena other than surface
plasmons, whose role is well documented.We derived the second-order statisticalmoments of thefield (CSD
functions, SDoCs, and far-zone SDs) scattered froman aperture in an infinite PEC screen (a structure that does
not support surface plasmons) using both rigorous EM theory and the commonly used PO approximation.We
compared and contrasted the EMandPOfield statistics and discussed their physical significance at length.

Fromour analysis, we concluded that the near field does impact spatial coherence, even in the absence of
surface plasmons, and the effects are observable. By examining the far-zone SDs and assuming a spatially
incoherent incident field, we found that near-field coherence effects weremost noticeable at large, nonparaxial
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scattering angles, where significant differences were noted between the EMandPOSDs.Most interestingly, we
found that this held true even for optically (or electrically) large apertures, where POwas assumed to be accurate.

To further examine these effects, we considered the near- and far-zone field statistics of Young’s classic, two-
slit experiment. Evenwith an incoherent incident field and large, widely separated apertures, we observed
interference of the light emitted from the slits implying that near-field physics had increased the spatial
coherence of thefield.

The analysis and findings presented in this work complement the prior theoretical and experimental
coherence research involving surface plasmons, and could find use in future, compact, low-power devices
designed tomanipulate or control spatial coherence.
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