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Abstract

We investigate how the near field affects partially coherent light scattered from an aperture in an
opaque screen. Prior work on this subject has focused on the role of surface plasmons, and how they
affect spatial coherence is well documented. Here, we consider other near-field effects that might
impact spatial coherence. We do this by examining the statistics of the near-zone field scattered from
an aperture in a perfect electric conductor plane—a structure that does not support surface plasmons.
We derive the near-field statistics (in particular, cross-spectral density functions) by applying
electromagnetic equivalence theorems and the Method of Moments. We find, even in the absence of
surface plasmons, that near-field physics can affect the coherence of the scattered field. The analysis
and findings presented herein complement the existing coherence-related surface plasmons literature,
and could find use in the design of photonic devices built to engineer spatial coherence.

1. Introduction

Motivated by the discovery of directional thermal emission (DTE), near-field effects on coherence have been
studied for the past 30 years. In 1988, the first experimental results of directional emission from a heated grating
were published [1, 2]. Since that time, DTE has been linked both theoretically and experimentally to the
excitation of surface plasmons [3—6], and recently, fabricated structures designed to directionally emit thermal
light at specific wavelengths have been demonstrated [7—10].

Directionality of a source implies spatial coherence; the existence of DTE proves that near-field physics can
have a significant impact on source coherence. In the case of DTE, this impact is profound in that an initially
incoherent source (a thermal source) is transformed into a partially coherent one by the excitation of surface
plasmons interacting with wavelength-scale structures.

Realizing the potential of this transformation, several authors have proposed using surface plasmons and
wavelength-scale structures to precisely control spatial coherence for reasons other than just spectral or
directional emission [11-17]. These plasmonic methods would permit coherence manipulation at the nano- or
micrometer scale—coherence control on a microchip—and be superior in terms of size, weight, power, and
complexity to the more traditional approaches for coherence control [18-23]. Even at longer wavelengths,
where true surface plasmons are not excited, researchers have fabricated materials to excite so-called ‘spoof
plasmons’ [24-27]. Although these spoof plasmons have not been used to affect spatial coherence to date, in
principal, they could be used for that purpose.

With the link between surface plasmons and coherence well established, we seek to answer whether there are
other near-field phenomena (perhaps secondary or tertiary effects) that can impact spatial coherence. We do this
by examining the scattering of a partially coherent wave from an aperture in an infinite perfect electric conductor
(PEC) plane—a structure that does not support surface plasmons. We simplify the analysis and computational
burden by assuming a two-dimensional (2D), z-invariant geometry; applying our results to a three-
dimensional (3D) aperture geometry is straightforward.

In this paper, we derive the transverse magnetic (TM) and transverse electric (TE) expressions for the cross-
spectral density (CSD) function [18, 28] in the aperture using electromagnetic (EM) theory and the commonly
used physical optics (PO) approximation [29-31]. In the former case, we apply Love’s equivalence theorem and
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Figure 1. Aperture ina PEC (¢ — o0) plane.

image theory [29-31], and enforce the continuity of transverse aperture fields to derive a magnetic field integral
equation (MFIE) for the unknown equivalent magnetic current (proportional to the electric field in the
aperture). Then, using the Method of Moments (MoM) [30, 32, 33], we numerically solve for the CSD of this
current. We compare and contrast the exact EM and PO normalized CSD functions, also known as the spectral
degrees of coherence (SDoCs) [18, 28], and discuss their physical significance.

We find that, even in the absence of surface plasmons, the near field does affect spatial coherence, and its
impact on the far-zone intensity (or equivalently, the spectral density when working in the space-frequency
domain [28]) is most pronounced at large, nonparaxial, scattering angles. We also find, even for relatively large
apertures and depending on the incident field’s SDoC, that near-field effects can still be observed.

The analysis and findings presented in this paper complement the existing near-field coherence research
involving surface plasmons, and will be useful in future photonic devices that manipulate or control spatial
coherence.

2. Analysis

2.1. Aperture geometry and assumptions

Figure 1 depicts the scattering geometry considered in this paper. A stochastic field, incident from the left,
illuminates a slit of width d in an infinitesimally thin PEC (¢ — 00) plane immersed in a linear, homogeneous,
and isotropic medium with permittivity € and permeability 1. We assume that the scatterer and the incident field
are z-invariant. As a result, Maxwell’s equations decouple into independent TM and TE sets, and the general 3D
problem becomes 2D. We observe the resulting scattered field in the slitat y = 0 and in the far-zone asa
function of ¢.

We note that the incident field shown in figure 1 should be interpreted as a single realization of a whole
ensemble of fields, and hence, the scattered field, resulting from that incident field, should be interpreted in the
same manner. We infer physical behavior of both the incident and scattered fields from statistical moments
taken over the whole ensemble of possible fields.

Since we are concerned with coherence, we require only the first and second moments of the fields, better
known as the mean and CSD function, respectively. To find these moments for the scattered field, we must know
the incident field’s mean and CSD function. We assume that the former is zero and hence, the mean scattered
field is also zero. For the latter, we assume a Schell-model [ 18, 28, 34] form for the incident field CSD function,
and further, that the mean intensity of the incident field fully and uniformly illuminates the slit. These two
assumptions result in a CSD function of the form

(B () EP* () = W (x, %) = Iy (3 — %), (1)

where o = x, zfor TM and TE polarizations, respectively, I, is the average intensity, and yis the SDoC
[18,28, 34].
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2.2. MFIEs

Returning briefly to figure 1, by applying Love’s equivalence theorem and image theory [29-31], we transform
the aperture geometry into an equivalent one, in which a magnetic current M radiates in unbounded space.
This current is unknown, and we derive an equation for M in terms of the incident field by enforcing the
continuity of the transverse magnetic field in the slit, namely,

1
WYLE

(k2 + VV)F(x, 00 x€[—d/2,d/2], )

—fi x H™(x,0) = i X -
)

where 7 is the unit normal to the slit ( here), k = w /e is the wavenumber, wis the radian frequency, and
V isthe del operator.

The remaining symbols in equation (2) are H inc_ which is the incident magnetic field, and F, which is the
electric vector potential [29, 30]. F contains M and is given by the integral expression

d/2 HD (klx — x'
a0y = [ cppmen B EEZXD g 3
—d/2 14
Note that M is related to the electric field in the slit by
M = —# x E. 4)
We will return to this simple relation when we present the PO solutions.
For TM polarization, H" and M are z directed, and equation (2) simplifies to
2 . d/2
ZEPG) = [ MM Kl — ) dx' 5)
k —d/2
In the case of TE polarization, H inc and M are x directed, and equation (2) becomes
, 52 /2
KEP< (o) = |+ = | [ MIEEOHD (Mx - ) dv, )
Ox? ) J-ar2

Note that the condition on x specified in equation (2) applies to these equations as well. We solve these two
MFIEs for their respective M in the next section.

2.3.MoM solutions

The first step in the MoM is to expand M in a set of basis functions. These basis functions should match, as
closely as possible, the physical behavior of the current. After expansion, the resulting integral equation is ‘tested’
by taking the inner product of both sides of the equation with another set of functions known as testing
functions. For accurate results, the combination of basis and testing functions must overcome the source-point
singularity in the Green’s function (Hankel function) and make the expressions on the right-hand sides of
equations (5) and (6) integrable.

We begin with the TM polarization MFIE given in equation (5). Being in the z direction, M™ goes like
1//x attheslitedges [35, 36], and the Hankel function, at the source-point singularity, goes like In (x). Taking
these two factors into account, we choose rectangular basis and delta testing functions to discretize equation (5)
in a procedure called point matching [30, 33, 37]. Equation (5) becomes

. d/2 I 4.
%E;m(xj) =y m™ [ . rect(x — xl)Héz) (klxj — x']) ', )
Ei )

where m;"™ is the unknown complex weight of the ith basis function, x;is the center of the ith rectangular basis
function, wis the width of a basis function (assumed to have equal widths), x;is the location of the jth delta
testing function, and rect(x) is [38]

1 x| <1/2
rect(x) =41/2 |x| = 1/2. (8
0 otherwise

Note that the delta testing functions are located at the centers of the rectangular basis functions.

We now proceed to the TE polarization MFIE given in equation (6). The x-directed MTE must go to zero at
the slit edges and does so like \/x [35, 36]. Although the Hankel function at the source-point singularity behaves
like In (x), the derivatives on the outside of the integral require a higher-order combination of basis and testing
functions than in the TM case to make the expression integrable.

Using the symmetry of the Green’s function and some basic calculus, we redistribute one of the derivatives to
operate on MTE yielding




10P Publishing

J. Phys. Commun. 3 (2019) 085012 MW Hyde and M ] Havrilla

2kEI™(x) = k? f i MTE(YHP (k|x — x']) dx’ + 9 f v [iMTE (x’)]Héz) (klx — x']) dx’.  (9)
—d/2 Ox J—ds2 | Ox'
We now choose triangular basis functions that span two discretized aperture segments, and rectangular testing
functions that extend from the center of one segment to the center of an adjacent segment [33]. Note by choosing
triangular basis functions, we ensure that M™E goes to zero at the slit edges. Substituting in these functions and
simplifying produces

a2 o\ L
2k f rect(x % )E;nc(x)dx

—d/2 w
da/2 X — X; da/2 ! e
= Z mIE sz rect( })f A(u)Héz) (k]x — x']) dx'dx
F —d/2 w —d/2 w
1| a2 x'— xi_
+ —[ Il rect(—”“ HP (K172 — ) d’
wlJ-das w
/2 x — x;
— rect| ——~1/2 H (k|xj1/2 — x'|) dx’
—d/2 w
/2 x' — xi_
— rect| —— =12 Héz) (klxj—1/2 — x'|) dx’
—d/2 w
ds2 x' — x;
+ f rect] —— 212 H (k|xj—1/2 — x’|)dx’]}, (10)
—d/2 w
where A(x)is [38]
— <
Alx) = {1 x| [x] < 1. ‘ an
0 otherwise

The final form for both the TM and TE discretized MFIEs—equations (7) and (10), respectively—is
b= Zm. (12)

Here, b is a vector containing the incident field in the aperture, m is a vector containing the unknown basis
function weights and physically represents the magnetic current, and Z is the impedance matrix, which
physically models how the field radiated from a current element affects or couples to every other element. Since
Z contains all the near-zone interactions of the aperture field, it is instrumental in determining how and to what
extent the near field affects spatial coherence. We will return to Z in a later section.

Lastly, the far-zone electric field radiated by these currents is

D i w ™ o
MM,y _ | Ik exp(—jkp) ¢ smc(k; cos ¢) Z,- m; " exp (jkx; cos §) ™
E (p) = Py I —

, (13)
JP % sin ¢sinc? (k% cos (;S) > m{"" exp (jkx; cos ¢) TE

where p = Xx + yy and sinc(x) = sin (x) /x.

2.4.PO solutions
Here, we briefly present the PO solutions [29-31, 38] to the aperture problem depicted in figure 1. We do so
because the PO approximation is commonly used in Fourier and statistical optics to predict the scattering (or
diffraction patterns) from apertures in opaque screens [34, 38]. It is well known that the PO approximation
returns inaccurate results for wavelength-scale apertures [29-31]. Later, we show that it also returns inaccurate
results for spatially incoherent incident fields, regardless of aperture size.

Returning to equation (4), the PO solution assumes that the aperture field is approximately the incident field,
namely,

M =~ MFO = —f x Einc, (14)

With this approximate expression for the current, it is simple to derive relations for the TM and TE far-zone
electric fields:

~ rd/2 .
. L |=e [ B exp ke cosg)dx’ T™

vo, — Ik exp(=jkp) ~d/2

EO(p) = || - S -

(15)
a2
VP Zsin¢ E™(x") exp (jkx' cos ¢p)dx’ TE

a1 Py
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2.5. CSD functions, SDoCs, and far-zone spectral densities
In this section, we derive relations for the CSD functions and SDoCs of the near-zone MoM and PO fields. These
second-order statistical moments show how the near-zone affects the coherence of the scattered field. To
examine how these near-field coherence effects impact the far-zone, we also find the MoM and PO far-zone
spectral densities (SDs). Although we do find relations for the MoM-based field statistics, these equations are in
terms of the impedance matrix Z and therefore, numerical in nature.

Referring back to equation (12), we easily find the currents by

m=Z"'b. (16)
The CSD function of m is found by multiplying (on the right) both sides of equation (16) by m', where 1 is the
conjugate transpose, and then taking the expectation (ensemble average), namely,
(mm'y = W,, = Z7(bb")(Z") 7, (17)
where the moment (bb") is the discretized CSD function of the incident field and equal to

41,

. e &g = x5) ™
(bb") = 1 . (18)
4k*w?I, f A)v[(xj — xj) — wtldt TE
-1
The SDoC of the currents, which is a direct measure of spatial coherence, is
y, = W , (19)
Jdiag(W,,) [diag(W,,)]"
where diag(X) returns the diagonal elements of X as a vector. The MoM far-zone SD is found by taking the
expectation of the magnitude squared of equation (13):
(IEYM(p) ) = SMM(p)
few? sincz(k% cos (;S) Zi)j (m™m™*) exp [jk(x; — x;) cos @] ™ 0
=— 20

27p | sin? ¢sinc4(k% cos ¢) Zl](m,TE m]TE*> exp [jk(x; — xj)cos #] TE,

where the moments in equation (20) are the TM and TE current CSD functions given in equation (17).

For the PO approximation, the CSD function of the currents is found by taking the autocorrelation of
equation (14), which is trivially equal to equation (1); the SDoC of the PO currents is therefore 7. We derive the
PO far-zone SD by computing the second moment of equation (15), namely,

(IEP°(p)I*) = S™(p)

/2 in in :
K Kd/z (E(x{)E* (x3)) exp [jk (x; — x3) cos ¢]dx; dx) ™
_ k. | | . Q1)
27 | sin? gb//d/z (EX(x])EP* (x)) exp [jk (x| — x3)cos p]dx{dx, TE
—d/2
Substituting in equation (1) and simplifying produces
kI 00 . d kcos ¢ 1 ™
SO(p) = —~ > 2(2 —t) ~( - t)dt{ . , 22
(p) 2mp e [ sine?| 2m1 | 19| =—— i TE (22)
where 4 is the Fourier transform of v, i.e.,
o0
YN = [ v exp(—janfodr. 23)

The bracketed function in the integrand is the Fourier transform of the aperture autocorrelation function P.
The far-zone PO SD is therefore proportional to the convolution of the Fourier transforms of P and v, and
physically is the coherent diffraction pattern filtered or smoothed by 4 [34, 39, 40].

3. Discussion

Having derived the requisite statistical moments, we now discuss their physical significance. Referring back to
equations (17) and (19), we first note that in general, the CSD function and SDoC of the currents—or
equivalently, the near field via equation (4)—are not equal to those of the incident field. This stands in contrast

5
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d=10x|08
206
o4 :
02 (h)
| / \
0.2 04 04 -02 0 02 04
(a1 Ty

Figure 2. TM and TE SDoC magnitudes with an incoherent incident field (equation (24))—(a) TM 17,,! d=1\(b)TE
|’1m| d=1X\()T™M |’1m| d =5\ (d)TE |lm| d =5\ (e)TM 17, d =10\, (f) TE|y,,| d = 10, (g) 1D cuts through TM |’lm|
withx, = 0,and (h) 1D cuts through TE |y, |withx, = 0.

to the PO CSD function and SDoC, which are equal to those of the incident field. These statements are true
regardless of aperture size.

The fact that the MoM CSD function and SDoC differ from the commonly used PO statistics is not that
surprising—even in the absence of surface plasmons. What truly matters is whether these differences give rise to
observable effects. To begin addressing this, we start with an approximate, analytically simple model for a
spatially incoherent incident field, i.e.,

Wit (x;, %) = Ip6(x1 — x), (24)

where 6 (x) is the Dirac delta function [28, 34]. The discretized incident field CSD function (bb*), givenin
equation (18), is proportional to the identity matrix I, and W, simplifies to

W, o< (Z'2)7". (25)

The PO CSD function is equal to equation (24). We note that the incoherent CSD function in equation (24)
cannot be represented exactly by the discrete (bb"), which has an equivalent width equal to that of a testing
function, or w.

Figure 2 shows the TM and TE SDoC magnitudes corresponding to the discrete CSD function in
equation (25) for several values of the aperture width d. The figure is organized into two columns, where the first
column shows the TM lv,,land the second column shows the TE | |- The first 3 rows of figure 2 show the full
2D |y, |; row 4 shows the corresponding 1D cuts through |y |withx, = 0.To compute Z, we discretized the
TM and TE aperture currents usingw = /50 segments.

Itis quite clear from figure 2 that the impact of the near field on coherence is most pronounced in the TE
polarization. This is due to the direction of the TE current or aperture field, which is oriented normal to the
aperture edge. By visualizing the TE current as numerous tiny magnetic dipole antennas placed end to end, we
see physically that this results in significant near-field coupling among ‘adjacent’ dipoles. Figure 2(h) shows that
the widths of the SDoC magnitudes (distances between the first zeros) are A/2. We note, however, that there is
significant residual coherence for separations beyond \/2 extending several A as seen in figures 2(d) and (f).

6
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d=1\
MoM d =5\
— e —PO d =10\

0 50 100 150 ’ 50 100 150
¢ (Degrees) ¢ (Degrees)
90
120 60
(d)
30 150 = NN
pS (dB) ¢ b
Q (]
3 0 180 “
225 -20-15 -10 25 -20 -15 -10

Figure 3. MoM and PO far-zone SDs in dB with an incoherent incident field (equation (24)) and d = 1, 5, and 10A—(a) TM pS
on a Cartesian grid, (b) TE p S on a Cartesian grid, (c) TM p Son a polar grid, and (d) TE p Son a polar grid.

On the other hand, the near zone has little affect on TM fields. The TM current is oriented parallel to the
aperture edge in the infinite, or invariant direction. In this case, the tiny magnetic dipole antennas are placed side
by side, resulting in negligible coupling between nearby antennas. Figure 2(g) supports this physical picture,
showing that the widths of the SDoC magnitudes are approximately A/10 and independent of d.

These findings are easily generalized to 3D problems. For instance, assumingad, X d, rectangular aperture
in the x-y plane, the “TM polarization’ scenario applies to the x- and y-directed currents parallel to the aperture
edgesaty = +d,/2andx = +d,/2, respectively. The TE scenario applies to the x- and y-directed currents
normal to the aperture edges atx = +d,/2andy = +d, /2, respectively. Likewise, for a circular aperture in the
x-y plane, the TM and TE scenarios apply to the ¢- and p-directed currents, respectively.

To investigate how the near-field coherence phenomena shown in figure 2 impact the far zone, figure 3
shows the MoM and PO far-zone SDs with an incoherent incident field. Like figures 2, 3 is organized into left and
right columns, which show the TM and TE SDs, respectively. Row 1 shows SM°M and S*° on a Cartesian grid;
row 2 shows S and S*° on a more physical, polar grid. All SDs are plotted in decibels (dB).

Here, we see differences in the MoM and PO far-zone SDs for both polarizations. Because the PO current
CSD function mirrors that of the incident field, $" is featureless showing no sign of the aperture. In the TE case,
it varies with ¢ because of the sin? ¢ in equation (22). Although $M°™ and S* differ for both polarizations, the
differences are much more pronounced in the TE case, especially at large observation angles where we observe
directional scattering. We also see partial constructive and destructive interference (ripples) in S¥°™ in
figure 3(b). Since the incident field is incoherent, these telltale signs of (partial) spatial coherence must be due to
near-field effects (see figure 2). We do not observe any interference phenomena in $° or TM S™°M,

Figures 2 and 3 show unequivocally that the near-field most strongly affects coherence in the TE
polarization. We therefore focus on the TE case for the remainder of this paper.

We now consider a more realistic incident field CSD function than equation (24), namely,

Wine (x, x) — Iosinc[%(xl - xz)], (26)

where 3 > 0is the coherence width (in units of waves) of the incident field. We note that the above CSD function
with 8 = 1is consistent with those of blackbody or Lambertian radiators [28], and therefore, could be
considered a ‘natural’ spatially incoherent source.

Figure 4 shows the normalized TE near-field SDs (second moment of the currents), the 1D cuts through the
SDoC magnitudes (x, = 0), and the corresponding $*°* and S*° in dB on polar grids for different 3. We
assumed d = 10\ and discretized the TE current usingw = /50 segments.

The results in figure 4 show, not surprisingly, that the PO approximation improves (agrees better with the
corresponding MoM result) as 3 increases, or equivalently, as the incident field becomes more spatially
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p=1
p=2
B=5
MoM B =10
— o —PO =20
4 2
3
S? (a)
JliSocceTcecoecrcssccoses) 0.5 (b)
0 0
-4 -2 0 2 4 -4 2 0 2 4

30

-20-10 0 10 20

Figure 4. MoM and PO TE near-zone SDs, SDoC magnitudes, and far-zone SDs for § = 1, 2, 5, 10, and 20,andd = 10A—(a)
(IMP)for B = 1 and 2; (b) (| M[*) for 3 = 5, 10, and 20;(0) |, | withx, = Ofor 8 = 1 and 2;(d) |7y, |withx, = 0for
B =5, 10, and 20; (¢) p Sin dB on a polar grid for 3 = 1 and 2; and (f) p Sin dB ona polar grid for 3 = 5, 10, and 20.

coherent. Starting with the current SD results (figures 4(a) and (b)), when 3 = 1, the MoM (| M |*) oscillates
with a period equal to A/2. The periods of these oscillations lengthen as B increases eventually settling at A in the
coherent limit. With the exception of 3 = 1, the MoM (| M |?) fluctuates around the PO result, which is always
unity.

For the SDoC magnitude results (figures 4(c) and (d)), there is good agreement between the MoM and PO
|v,,|exceptwhen 3 = 1, which is the most interesting case. While the width of the 3 = 1 MoM |y |is
approximately equal to the PO SDoC magnitude (a sinc(x) function, see equation (26)), the ‘side lobes’ are
significantly higher for the MoM |y |. This physically means that the scattered field is spatially more coherent
than predicted by the commonly used PO approximation.

Lastly, figures 4(e) and (f) show the far-zone SD results, where, again, we observe significant differences
between $™™ and S° when 8 = 1. Like the SD results in figure 3, these differences are most noticeable at large
scattering angles.

We note here thatd = 10, which is large enough for the PO approximation to be accurate (see the 5 = 20
results in figure 4(f)). The 3 = 1 results in figure 4 show that the PO approximation gives nonphysical results for
incoherent incident fields. This finding is independent of aperture size and a key result in this paper.

4.Young’s experiment

In the previous section, we showed and explained that because of the direction of the TE current, significant
near-field coupling occurs, generally resulting in an increase in spatial coherence. Here, we investigate this
phenomenon further using a two-slit geometry, i.e., Thomas Young’s experiment [28, 34]. The purpose is to
observe interference of the light emitted from the two slits when illuminated by a spatially incoherent TE field.
The two-slit geometry is similar to that depicted in figure 1—the difference being that there are now two
apertures (of width d) centered on the origin and spaced D apart (when measured from center to center).

The MoM CSD and SDoC are still, in general, given by equations (17) and (19); however, the TE MFIE is
now a system of coupled MFIEs in terms of the currents in slits 1 and 2:
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Figure 5. MoM and PO SDoC magnitudes for an incident field CSD function given by equation (26) with § = 1and
D = 1.1d = 5.5), 1.4d = 7\, and 2d = 10A—(a) MoM |'_ym| D = 5.5\, (b) PO|’1m| D= 5.5/\,(C)MOM|’1m| D = 7)\,(d) PO
1v,,| D=7\ (MoM|y, | D= 10, and (f) PO |v,,| D = 10A.

Figure 6. MoM and PO far-zone full, coherent, and incoherent SDs for an incident field CSD function given by equation (26) with
S =1land D = 1.1d = 5.5\, 1.4d = 7)\,and2d = 10A\—(a) D = 5.5)\,(b)D = 7\,and (c) D = 10\

inc 82 2 TE 2)

2kE™(x) = (k2 + @) ;fs MEEYHP (kx — X)) dx’ x € S,

k() = (k2 4+ 2 sz f MPECHHP (kx — x']) dx' x € Sy, 27)
‘ ox?) = Ys.

where $; = [-D/2 — d/2, —D/2 + d/2]and S, = [D/2 — d/2, D/2 4+ d/2]. The same triangular basis
and rectangular testing functions that were used in the single aperture problem are used here as well. Since the
analysis is very similar to that presented in section 2.3, we omit the details for the sake of brevity. The MoM far-
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zone SD is easily found by generalizing equation (13) and becomes

SMOM(p) — SMOM,i(p) + SMOM,C(p)

2
SMoMii () — kw? sin? ¢>sinc4(kK cos <Z>)
27p 2

X [Z(mlT,lE mlleE*> exp [jk(x;, — x;,) cos ¢ + Z(mZTJE m%f*) exp [jk(xj — xj)cos gb]]

1
[IR7) vlz

2
SMOM,C(p) — kL sin? q’)sinc“(kK Ccos ¢)
27p 2

X [Z (mlT,lE m%f*} exp [jk(x; — xj)cos¢] + > (mZTJleT,f*> exp [jk(xj, — x;,) cos @] ], (28)
BYJ) Jpha

where the superscripts ‘" and ‘c’ stand for incoherent and coherent, respectively. The incoherent contribution to
the SD SMoM:i contains the self terms, i.e., contains the autocorrelations of the currents in slits 1and 2. The
coherent contribution SM°M-€ contains the coupling terms, viz., the cross correlations of the currents in slits 1
and 2. The magnitudes of these cross correlations (they are equal) determine to what extent the light emitted
from one slit interferes with the light emitted from the other.

The PO CSD and SDoC mirror those of the incident field. Like the MoM far-zone SD, $*° is easily derived by
generalizing equation (22), namely,

§70(p) = <10 gin2 g f - d2sinc2(zwit)[2 + 2cos(27rDt)]7(kcﬂ - t)dt. (29)
2mp —00 2 2

The incoherent and coherent terms of ST are

: kly . o0 . d k cos ¢
PO,i 0 2 2 2 > —
S (p) 227rp sin (bj:oc d*sinc (2772 t)*y( 5 t)dt

™

SPO<c(p) = 2ﬂ sinngfoo dzsincz(ngt) cos (ZﬁDt)W(M - t)dt. (30)
21p . 2 2

s

Figure 5 shows the full 2D MoM and PO SDoC magnitudes for several values of D. The first column of
images in figure 5 shows the MoM |y _ |; the second column shows the PO SDoC magnitudes. The xand y tick
marks (F2.75, F3.5, and F 5) demark the centers of slits 1 and 2, respectively. Figure 6 shows the
corresponding $*°™ and S*°, plus their incoherent and coherent contributions. Here, we assumed the slits were
d = 5, the currents were discretized usingw = /50 segments, and the incident field CSD function was given
by equation (26) with § = 1.

The SDoC magnitudes in figure 5 are block 2 x 2, with the off-diagonal blocks physically showing how
much one slit coherently couples to the other. As physically expected, the amplitudes of these blocks decrease as
D increases. In addition, one notices that the off-diagonal block amplitudes for the MoM |y, |are significantly
higher than the corresponding PO SDoC magnitudes, which are very weak. This means that, although
illuminated by a spatially incoherent field, the light emitted from the two slits is actually partially coherent, and
near-field physics are responsible for the transformation.

Figure 6 shows the extent to which coherent near-field coupling is observable in the far zone. For all values of
D, there is a coherent contribution to SM°™ which causes observable (in some cases, minor) differences between
MM and SMoMi Jocated predominately at large scattering angles. As physically expected, these differences are

most noticeable when D is the smallest (see figure 6(a)). We observe no discernible differences between sPe
and SPO1,

5. Conclusion

In this paper, we studied how the near field affects spatial coherence considering phenomena other than surface
plasmons, whose role is well documented. We derived the second-order statistical moments of the field (CSD
functions, SDoCs, and far-zone SDs) scattered from an aperture in an infinite PEC screen (a structure that does
not support surface plasmons) using both rigorous EM theory and the commonly used PO approximation. We
compared and contrasted the EM and PO field statistics and discussed their physical significance at length.
From our analysis, we concluded that the near field does impact spatial coherence, even in the absence of
surface plasmons, and the effects are observable. By examining the far-zone SDs and assuming a spatially
incoherent incident field, we found that near-field coherence effects were most noticeable at large, nonparaxial

10
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scattering angles, where significant differences were noted between the EM and PO SDs. Most interestingly, we
found that this held true even for optically (or electrically) large apertures, where PO was assumed to be accurate.

To further examine these effects, we considered the near- and far-zone field statistics of Young’s classic, two-
slit experiment. Even with an incoherent incident field and large, widely separated apertures, we observed
interference of the light emitted from the slits implying that near-field physics had increased the spatial
coherence of the field.

The analysis and findings presented in this work complement the prior theoretical and experimental
coherence research involving surface plasmons, and could find use in future, compact, low-power devices
designed to manipulate or control spatial coherence.
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