
Air Force Institute of Technology Air Force Institute of Technology 

AFIT Scholar AFIT Scholar 

Faculty Publications 

11-2018 

Optimal Policy for Sequential Stochastic Resource Allocation Optimal Policy for Sequential Stochastic Resource Allocation 

Kalyanam Krishnamoorthy 
InfoSciTex Corporation 

Meir Pachter 
Air Force Institute of Technology 

David W. Casbeer 
Air Force Research Laboratory 

Follow this and additional works at: https://scholar.afit.edu/facpub 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Krishnamoorthy, K., Pachter, M., & Casbeer, D. W. (2016). Optimal Policy for Sequential Stochastic 
Resource Allocation. Procedia Computer Science, 95, 483–488. https://doi.org/10.1016/
j.procs.2016.09.325 

This Article is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in 
Faculty Publications by an authorized administrator of AFIT Scholar. For more information, please contact 
AFIT.ENWL.Repository@us.af.mil. 

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Ffacpub%2F171&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:AFIT.ENWL.Repository@us.af.mil


 Procedia Computer Science   95  ( 2016 )  483 – 488 

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology
doi: 10.1016/j.procs.2016.09.325 

ScienceDirect

Complex Adaptive Systems, Publication 6
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2016 - Los Angeles, CA

Optimal Policy for Sequential Stochastic Resource Allocation

K. Krishnamoorthya,*, M. Pachterb, D. Casbeerc

aInfoSciTex Corporation, a DCS Company, Wright-Patterson A.F.B., OH 45433, USA
bAir Force Institute of Technology, Wright-Patterson A.F.B., OH 45433, USA

cAir Force Research Laboratory, Wright-Patterson A.F.B., OH 45433, USA

Abstract

A gambler in possession of chips/coins is allowed (> ) pulls/trials at a slot machine. Upon pulling the arm, the slot 
machine realizes a random state {1, … , } with probability ( ) and the corresponding positive monetary reward ( ) is 
presented to the gambler. The gambler can accept the reward by inserting a coin in the machine. However, the dilemma facing 
the gambler is whether to spend the coin or keep it in reserve hoping to pick up a greater reward in the future. We assume that the 
gambler has full knowledge of the reward distribution function. We are interested in the optimal gambling strategy that results in 
the maximal cumulative reward. The problem is naturally posed as a Stochastic Dynamic Program whose solution yields the 
optimal policy and expected cumulative reward. We show that the optimal strategy is a threshold policy, wherein a coin is spent 
if and only if the number of coins exceeds a state and stage/trial dependent threshold value. We illustrate the utility of the result 
on a military operational scenario.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology.
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1. Introduction

We are interested in the optimal sequential allocation of resources to a system over stages, where < .
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At each stage, no more than 1 resource can be allocated to the system. The system state, = {1, … , } evolves 
randomly and at each stage, ( ) > 0 is the probability that the system state will be . If the system is at state and 
a resource is allocated to the system, then an immediate reward, ( ) > 0, is gained. We wish to compute the 
optimal allocation that results in the maximal cumulative reward.

The problem considered herein is a special case of the Sequential Stochastic Assignment Problem (SSAP)1. The 
SSAP deals with the assignment of differently abled men to jobs that arrive sequentially. The fitness of the 
man is given by ; 0 1. Associated with job {1, … , } is a random variable that takes on the value 

. The value/ reward associated with the assignment of the man to job is given by the product . The ; = 1, … , are i.i.d. random variables with a known distribution. The goal is to maximize the total expected 
reward. In our simplified setting, the (< ) men are identical. The solution in Ref. 1 can therefore be applied by 
assigning = 1, = 1, … , and = 0, = ( + 1), … , . Moreover, in the resource allocation setting we 
consider, the continuous valued random variable is replaced by a discrete valued random variable (with known 
distribution) that takes values from the finite set: { (1), … , ( )}. Optimal and asymptotically optimal decision 
rules for general resource allocation problem and its connection to the SSAP are discussed in Ref. 2. Finitely valued 
random rewards are also considered in Ref. 3; but the time between successive pulls is modelled as a renewal 
process and the performance metric is a (exponentially) discounted sum of rewards. In our work, we consider a 
simpler model with no discounting; thereby rendering the time between successive pulls irrelevant. In doing so, we 
uncover a structurally elegant solution. A related work4 considers the problem of optimal donor-recipient assignment 
in live-organ transplants. Optimal sequential inspection polices that deal with allocation of a continuous valued 
decision variable (fuel/ time) is considered in Ref 5-6; therein a threshold policy is shown to be optimal as well. For 
a military operational scenario that involves optimal inspection of sequential targets, see Ref. 7.

Let ( , , ) indicate the maximal cumulative reward (“payoff to go") at stage , when the system state is with (> 0) resources in hand. It stands to reason that ( , , ) satisfies the Bellman recursion: ( , , ) = max, ( + 1, ), ( ) + ( + 1, 1) , , 1 < , (1)

where the average return: ( , ) = ( ) ( , , ). The decision variable = 0,1 indicates the number of 
resources allocated to the system at stage . The optimal decision is therefore given by: ( , , ) = 1, if ( ) ( + 1, ),0, otherwise, , > 0,1 < .
where the marginal expected reward obtained by allocating an additional resource over and above 1 resources to 
the downstream stages + 1 to is given by: ( + 1, ) = ( + 1, ) ( , 1).
The boundary condition for the recursion (1) is given by: ( , , ) = 0, = 0,( ), 1. , = 1, … , .( , ) = 0, = 0,, 1,
where the average reward, = ( ) ( ).

2. Monotonic marginal reward

Lemma 1. For = 1, … , ( 1), we have: 0 = ( + 1, + 1) < < ( + 1,1).
Proof. We show the result by backward induction on . By definition, ( , ) = , = 1,0, = 2,
and so, 0 = ( , 2) < ( , 1) = .
Let us assume that for some = 2, … , ( 2):0 = ( + 1, + 1) < < ( + 1,1). (2)
In other words, the marginal reward, ( + 1, ), is a monotonic decreasing function of with finite support. Given 
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the monotonicity property, let the threshold ( , ) be the smallest positive integer such that ( ) ( + 1, ).
Recall that the optimal policy is given by: ( , , ) = 1, if ( ) ( + 1, ),0, otherwise, , > 0,1 < .
It follows that: ( , , ) = 1, if ( , )0, otherwise, , = 1, … , .
Accordingly, the maximal reward satisfies: ( , , ) = ( ) + ( + 1, 1), ( , ),( + 1, ), < ( , ), = 1, … , .
Let ( , , ) = ( , , ) ( , 1, ). It follows that: ( , , ) = ( + 1, ), < ( , ),( ), = ( , ),( + 1, 1), > ( , ).                 (3)

From the definition of the threshold value ( , ), we have: ( + 1, ( , ) 1) > ( ) ( + 1, ( , )).
Also, from (3), we have: ( , + 2, ) = ( + 1, + 1) = 0. (4)
So, combining (2), (3) and (4), we have: 0 = ( , + 2, ) < < ( , 1, ), = 1, … , .
Since ( + 1, ) = ( ) ( + 1, , ), and probability ( ) 0, it follows that: 0 = ( , + 2) < < ( , 1).

The above result shows that the optimal policy is structured and is in fact a control limit policy. The state and stage 
dependent threshold is given by ( , ). Structured policies are appealing to decision makers in that they are easy to 
implement and often enable efficient computation - for details, see Sec 4.7.1 of Ref. 8. Applying Lemma 1 to the 
most and least profitable states, we get the following result.

Corollary 1. If ( ) = max ( ) and = min ( ), then ( , ) = 1 and ( , ) = + 1.

In other words, for the state with the highest reward, it is always optimal to assign a resource (if available). On the 
other hand, for the least profitable state, it is optimal to assign a resource if and only if the number of resources is 
greater than the number of stages/trials left i.e., if > . So, for the simple case of 2 states, i.e., = 2, the 
resulting optimal policy is trivial and requires no computation whatsoever. This simple result will be applied to the 
practical scenario considered later. For > 2, we wish to establish a direct recursion equation to compute the 
threshold values. In doing so, we circumvent solving for the value function and somewhat alleviate the curse of 
dimensionality associated with Dynamic Programming.

2.1. Direct recursion for generating the partitions

For = 1, … , ( + 2), we have the marginal expected reward given by: ( , ) = ( , , ) ( )= ( + 1, ) ( ) + ( + 1, 1) ( ) + ( ) ( ), (5)

where the sub-sets:= : ( + 1, 1) > ( ) ( + 1, ) , = : ( ) ( + 1, 1) , = : ( ) < ( + 1, ) .
Note that we arrived at the recursion (5) by substituting for ( , , ) from (3). So, we have established a direct 
recursion from ( + 1, ) to ( , ) with the boundary condition given by: 
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( , ) = , = 1,0, = 2.
The optimal threshold policy is given by:( , , ) = 1, if ( , ),0, otherwise, , = 1, … , ( + 2).
As before, ( , ) is the smallest positive integer such that ( ) ( + 1, ).

2.2. Single coin case

Suppose the casino provides a coin for “free” and charges the gambler for the trials purchased. This would 
be the special case where = 1. Indeed, we can drop the dependence on and let indicate the maximal expected 
cumulative reward with trials to go. So, = and = (1 ) + ( ) ( ), > 1,
where the set and probability are given by: = { | ( ) }and = ( ) .
The casino should charge > for it to remain profitable. With trials to go, let be the average number of 
pulls/ trials expended before the coin/resource is spent. It follows that: = + (1 )(1 + ).
In other words, with trials available, the coin is either spent now with probability or after 1 + trials with 
probability 1 . The boundary condition is given by: = 1. The gambler can take into consideration three 
factors before purchasing trials: 1) the expected return, , 2) cost, and time spent in completing the trials.

2.3. Heterogeneous coins case

Suppose we have different coins ordered such that the immediate reward upon using coin at state 
yields the reward ( ), where < < < . We wish to determine the optimal assignment of coins with 

pulls/trials to go such that the expected cumulative reward is a maximum. As mentioned earlier, the scenario 
considered herein is a variation of the SSAP1. So, the results therein apply here. In particular, we state below the 
relevant result i.e., Theorem 1 in Ref. 1, as it applies to our discrete valued problem.

Theorem 1. There exist numbers: 0 = , < , < < , = ,
such that when there are stages to go, the optimal choice in the 1 stage is to use the coin if the 1 stage 
reward, ( ) [ , , , ). The , depend on the probabilities, ( ), but are independent of ’s. Furthermore, 
the , ; = 1, … , are computed via the recursion below: , = ( ) ( ), + , { ( ) < , }+ , { ( ) , }, (6)

where, , = { | , ( ) < , }.
With the association: + 1 and + 1, it is easy to show that: , = ( + 1, ), = 1, … , .
Therefore, the recursive equations (5) and (6) are equivalent.

3. Military Application

A bomber travels along a designated route/ path and sequentially encounters enemy target sites numbered 1 to 
on the ground. Upon reaching a target site, the bomber is provided feedback information on the nature of the 

enemy site. This could come from an Automatic Target Recognition (ATR) module on-board the vehicle or a human 
operator looking at the target site via an on-board camera. We assume that the feedback sensor/ classifier is error-
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prone and and respectively indicate the probabilities that a True and False Target are correctly identified. The 
bomber equipped with (< ) homogenous weapons can either deploy a weapon at the current location or keep it 
in reserve for future sites. We stipulate that the bomber gains a reward of 1 if it destroys a True Target and 0
otherwise. We are interested in the optimal weapon allocation (feedback) strategy that maximizes the expected 
cumulative reward.

3.1. Error-prone classifier

The imperfect classifier in the feedback path identifies the target site to be either a True or a False Target. Let 
the random variable = { , } specify whether a target site contains a True Target, or False Target, . Let 
the classifier decision, specify whether the target site is identified to be a True or False Target. Consider an 
environment where the true target density, i.e., a priori probability that a target site is a True Target, { = } = ,
where 0 < < 1. The conditional probabilities, which specify whether the classifier correctly identified True and 
False Targets, are given by: : = { = | = } and : = { = | = }.
Together, and determine the entries of the binary confusion matrix (see Table 1) of the classifier.

     Table 1. Classifier confusion matrix.

Classifier decision

Target site

Target False target

Target 1
False target 1

Suppose the classifier decision is . From Bayes’ rule, the a posteriori probability that the target site is a True Target 
is given by: ( ): = { = | = } = ( ) ,
where ( ) = + (1 )(1 ) is the probability that the classifier’s decision is . On the other hand, if the 
classifier decision is , the a posteriori probability that the target site is a True Target is given by: ( ): = { = | = } = (1 )( ) ,
where ( ) = (1 ) + (1 ) is the probability that the classifier’s decision is .

We make the following standard assumption regarding the Type I and II error rates.

Assumption 1. > 1 .
The above assumption implies that the classifier is more likely to correctly classify a True Target than 

misclassify a False Target. Also, when = 0.5, the probability of correct classification, + (1 ) > 0.5 i.e., 
the outcome is better than a random guess, which is intuitively appealing. We shall show that, under this 
assumption, the optimal decision takes a remarkably simple form, i.e., bomb a site if and only if the classifier 
identifies it to be a True Target. Thereafter, we shall also highlight how the optimal solution changes, when this 
assumption is violated.

To reconcile the application scenario with the model considered earlier, we note that there are only two states, 
i.e., = { , }. The probabilities that = , are given by ( ) and ( ) respectively and the reward 
associated with the two states are given by ( ) and ( ) respectively. Under Assumption 1, we show that the 
reward function satisfies the following property.

Lemma 2. 0 < ( ) < < ( ).
Proof. From Assumption 1, we have: 
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A similar argument shows that ( ) < and by definition, ( ) > 0.

Lemma 2 implies that the classifier is reliable in that its output nudges the a posteriori probability in the right 
direction.

3.2. Optimal bombing strategy

Suppose the bomber is at the (out of ) target site. Since ( ) > ( ), Corollary 1 tells us that the 
corresponding threshold values, ( , ) = 1 and ( , ) = + 1. In other words, it is optimal to bomb a target 
site only if either:
1. The site is identified to be a True Target or
2. The number of weapons in hand is greater than the number of target sites/stages left to visit.
In light of the above policy, the expected maximal cumulative reward is given by: = ( ) ( ) ( ( ) + ( ) ( )) + ( ) ( ) ( ) .
The above calculation is based on the optimal strategy which yields a reward of ( ) + ( ) ( ) when out 
of the trials yield in a positive (True Target) identification. We sum over all possible wherein the cumulative 
reward associated with each is multiplied by the probability of occurrence of True Target identifications out of 

sites.
Suppose Assumption 1 is not true and > 1 . It is trivial to show that ( ) > ( ) and so, the optimal 

strategy is reversed in that it is optimal to bomb a site only if it is identified to be a False Target. This seemingly 
strange result is due to the classifier being a counter indicator or a reliable liar! Finally, if = 1 , the classifier is 
useless since ( ) = ( ) = . So, any policy is optimal and will result in the expected cumulative reward, .

4. Conclusion

We consider a variant of the Sequential Stochastic Assignment Problem (SSAP), wherein the rewards for 
incoming jobs are drawn from a discrete (finitely valued) distribution and the men assigned to do the job are 
identical. We show that an available resource (man) is assigned to an incoming job if and only if the number of 
resources left is no less than a state and stage dependent threshold value. In doing so, we uncover an interesting 
structure in the optimal policy. For the special case where the incoming jobs are of two types only, the policy 
becomes trivial in that an available resource is only assigned to the more profitable state except when there are more 
resources available than jobs left to process. This result is applied to an operational military example; where the 
optimal policy is to bomb a true target (site) so long as a reliable classifier is used to identity the site.
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