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RESEARCH Open Access

Longitudinal homogenization of the
microbiome between both occupants
and the built environment in a cohort
of United States Air Force Cadets
Anukriti Sharma1, Miles Richardson1, Lauren Cralle1, Christopher E. Stamper2, Juan P. Maestre3,
Kelly A. Stearns-Yoder4,5,6, Teodor T. Postolache5,6,7,8, Katherine L. Bates6,9, Kerry A. Kinney3, Lisa A. Brenner4,5,6,10,
Christopher A. Lowry2,4,5,6,11,12, Jack A. Gilbert1 and Andrew J. Hoisington5,6,13*

Abstract

Background: The microbiome of the built environment has important implications for human health and wellbeing;
however, bidirectional exchange of microbes between occupants and surfaces can be confounded by lifestyle,
architecture, and external environmental exposures. Here, we present a longitudinal study of United States Air
Force Academy cadets (n = 34), which have substantial homogeneity in lifestyle, diet, and age, all factors that
influence the human microbiome. We characterized bacterial communities associated with (1) skin and gut
samples from roommate pairs, (2) four built environment sample locations inside the pairs’ dormitory rooms,
(3) four built environment sample locations within shared spaces in the dormitory, and (4) room-matched
outdoor samples from the window ledge of their rooms.

Results: We analyzed 2,170 samples, which generated 21,866 unique amplicon sequence variants. Linear
convergence of microbial composition and structure was observed between an occupants’ skin and the
dormitory surfaces that were only used by that occupant (i.e., desk). Conversely, bacterial community beta
diversity (weighted Unifrac) convergence between the skin of both roommates and the shared dormitory
floor between the two cadet’s beds was not seen across the entire study population. The sampling period
included two semester breaks in which the occupants vacated their rooms; upon their return, the beta
diversity similarity between their skin and the surfaces had significantly decreased compared to before the
break (p < 0.05). There was no apparent convergence between the gut and building microbiota, with the
exception of communal bathroom door-handles, which suggests that neither co-occupancy, diet, or lifestyle
homogenization had a significant impact on gut microbiome similarity between these cadets over the observed time
frame. As a result, predictive classifier models were able to identify an individual more accurately based on the gut
microbiota (74%) compared to skin (51%).
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Conclusions: To the best of our knowledge, this is the first study to show an increase in skin microbial similarity of two
individuals who start living together for the first time and who are not genetically related or romantically involved.
Cohabitation was significantly associated with increased skin microbiota similarity but did not significantly influence the
gut microbiota. Following a departure from the occupied space of several weeks, the skin microbiota, but not the gut
microbiota, showed a significant reduction in similarity relative to the building. Overall, longitudinal observation of
these dynamics enables us to dissect the influence of occupation, diet, and lifestyle factors on occupant and
built environment microbial ecology.

Keywords: Dormitories, Gut microbiome, Human microbiome, Longitudinal homogenization, Microbiome of
the Built Environment, Roommates

Background
The microbiome of the built environment (MoBE) may
have profound impacts on human health and disease
both through direct (i.e., exposure to beneficial and
pathogenic microorganisms) and indirect mechanisms
(i.e., influencing the composition and structure of the
human microbiota) [1]. Shared occupancy of an indoor
space may result in an increased risk of pathogen expos-
ure, but it could also lead to shared indoor microbial ex-
posures that may shape host immunology. Furthermore,
homogenization of lifestyle traits following shared occu-
pancy of an indoor space could influence host-associated
microbial similarity of the occupants [2]. Bacterial and
fungal communities, characterized using amplicon and
metagenomic sequencing approaches in a diverse array
of occupied built environments, including homes [3–8],
hospitals [9–12], commercial facilities [13, 14], and the
International Space Station [15, 16], have demonstrated
that building occupants contribute significantly to the
indoor microbiome [17, 18]. Built environments are
designed for different functions, with non-standard oper-
ating conditions that influence both the indoor micro-
biome as well as occupant health. Seasonal variation in
the contribution of outdoor-associated microbes to the
indoor microbiome adds further complexity [4, 19,
20], as do differing wind patterns [21–24] and the de-
gree of urbanization [7, 25]. As such, the microbial
communities of indoor spaces are diverse and dy-
namic, which can confound attempts to characterize
how shared occupancy of the indoor environment
shapes the skin- and stool-associated bacterial com-
munities of human occupants.
The human microbiome is quite individual to each

person [26–29] and is rapidly dispersed into the sur-
rounding environment and potentially to other people
sharing the same space [30–34]. However, differences in
culture, diet, lifestyle, medicine use, geography, and psy-
chological and physical health can influence an individ-
ual’s skin and gut microbiota [35–39], potentially
confounding our ability to clearly examine how shared

occupancy shapes microbial similarity. Schloss et al. [40]
found the gut microbiomes in a family of eight shared a
core set of operational taxonomic units (OTUs), but,
also, each individual contained a set of unique taxa that
were distinct enough longitudinally to accurately predict
the individual from the group using random forest
analysis [37]. For the skin microbiome, Leung et al. [41]
observed in cohabitating households that skin microor-
ganisms shared between occupants in the same house
ranged from 7–94%. Lax et al. [31] demonstrated that
occupants that physically interact with each other share
more skin bacterial taxa over time than non-physically
interacting occupants that share the same space [28]. In
hospitals, skin bacterial taxa associated with the prior
occupant of a patient-room were found to be transferred
to a new patient when they took up occupancy [9]. The
degree of bacterial community similarity between occu-
pants and a building appears to be dependent on both
direct human interaction with surfaces and the number
of occupants interacting with that surface.
Here, we present a longitudinal study of United States

Air Force cadets and their built environment. Our study
design was strengthened by sampling a highly homoge-
neous population that shared many factors such as a
standardized diet, lifestyle, housing, and age, which di-
minished the potential influence of several confounding
variables that are known to affect the composition and
structure of human microbiota [42–46]. The bacterial
community was characterized from both occupants and
building surfaces in dyads sharing a room and groups of
individuals in different cohabitation locations in a dor-
mitory. The overall goal of this study was to determine
how co-occupancy influenced the skin-, gut-, and built
environment-associated microbiota of individuals with
homogeneous diet, lifestyle, and age. The specific aims
of the study were to (1) assess the longitudinal changes
to the cadet skin and gut microbiomes, (2) determine
how shared occupancy influences the microbiome of the
built environment, (3) determine sources of the micro-
biome of the built environment, and (4) determine
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accuracy of prediction of occupancy based on compari-
sons of the skin and gut microbiome of the occupant
and the microbiome of the built environment. As the
composition and structure of the human microbiome is
known to influence health, it is of fundamental import-
ance that we are able to understand how co-occupancy
influences the sharing of that microbiota and whether
increases in microbial similarity between occupants per-
sists over time.

Methods
Cadets’ recruitment
The United States Air Force Academy (USAFA) Insti-
tutional Review Board approved the project on 10
May 2016 (FAC20160046H). Cadets were all volun-
teers, recruited by student peers to be a part of the
study. The original study design included four squad-
rons, each squadron of approximately 100 cadets. Due
to the need to meet participant enrollment targets,
the study was modified to include four sets of two
adjacent squadrons (squadrons 1 and 2, squadrons 3
and 4, squadrons 19 and 20, squadrons 27 and 28).
Voluntary surveys were given to the participants at
the start of the study and during each week of sam-
pling. The full surveys are included in the supporting
information (Additional file 1).

Sample collection
Samples for the study were collected weekly at nine dif-
ferent time points: five consecutive weeks at the start of
the study, 2 weeks after a November break, and 2 weeks
after winter break (Fig. 1, Additional file 2). Human and
MoBE samples were collected at the USAFA twice per
week and samples from the same week were composited
into one sample after sequencing for post-sequencing
analysis. A total of 34 cadets occupying 21 rooms partic-
ipated in this study. Participants were instructed on
self-sampling techniques for gut microbiome (a swab of
soiled toilet paper) and skin microbiome (a swab of
inner elbow) using sterile dual-tipped cotton swabs (Cat.
No. 281130, Puritan Medical Products, Guilford, ME,
USA). The participant instructions to self-swab are in-
cluded in the supplemental information (Additional file
3). All self-collected samples were stored in a local
freezer for up to 2 days at − 4 °C and then moved to a −
20 °C freezer while awaiting shipment for further pro-
cessing. Participants were sampled from eight different
squadrons (approximately 100 cadets that live and train
together) that were located in different locations on
campus: squadrons 1 and 2 (adjacent), squadrons 3 and
4 (on the floor below squadrons 1 and 2), squadrons 19
and 20 (in the same building but approximately 400 feet
away from squadrons 1–4), and squadrons 27 and 28 in
another building (see Fig. 1 and Additional file 2).

Fig. 1 Sampling methodology. a Samples were grouped into two dormitories and further defined by squadron and room. b Timeline of sampling
including the 9 weeks and key events during sampling

Sharma et al. Microbiome            (2019) 7:70 Page 3 of 17



Built environment samples were collected from indi-
vidual rooms with pre-sterilized EnviroMax swabs (Cat.
No. 25-88050 PF, Puritan Medical Products) of each par-
ticipant’s desk, a window sill outside the room (outdoor
sample) and a 1-m2 vacuum sample (Cat. No. DU-ST-1,
Indoor Biotechnologies, Charlottesville, VA, USA) of the
dormitory room floor between the desks in each room.
In each squadron building, swabs were collected and
pooled prior to DNA extraction from two stainless steel
bathroom door handles, a floor corner protected from
floor cleaning equipment (swabs from a total of four
dust samples), a surface above 5 feet that was a surface
not normally touched by the cadets (swabs from a total
of four dust samples), and the floors of squadron com-
mon use areas (thimble vacuum samples; Additional file
2). Six undergraduate research cadets were trained in
sampling and performed all room and squadron sam-
pling (see Additional file 2).

Characterizing features of the built and outdoor
environments
Sampling was conducted in two dormitories at the
USAFA over a period of 5 months from August 2016 to
January 2017; samples were collected during a subset of
9 weeks during this 22-week period (Fig. 1). The heat to
each dormitory is supplied through a centrally controlled
radiated water system located below the windows in
each dormitory room; the rooms are not equipped with
air conditioners for cooling. The dormitory rooms were
all identical in size (approx. 11 m2) and held two partici-
pants. Dormitory rooms were cleaned by the occupants
as needed. Common areas, to include bathrooms, were
cleaned by an external cleaning company each night of
the week. One wall in each room contained three win-
dows, two of which were able to be opened by the cadets
for natural ventilation.

Microbiome library preparation
Samples were shipped in coolers with dry ice to the Ar-
gonne National Laboratory for DNA processing. The tips
of the sampling swabs were broken off into 1.5 ml micro-
tubes containing 500 μl of sterile 1× phosphate-buffered
saline (PBS) solution. The swab tips were then immedi-
ately vortexed for 10 s. Bacterial DNA was extracted dir-
ectly from the residual PBS solution using the PowerSoil
DNA isolation kit (Mo Bio Laboratories, Carlsbad, CA,
USA) following the protocol of Flores et al. [47]. Bacterial
DNA from vacuum samples of participants’ rooms and
common areas was extracted from dust particles by pla-
cing approximately 0.25 g of vacuum filter dust from the
thimbles into each well of PowerSoil DNA isolation kits
and extracting according to Flores et al. [47]. The V4 re-
gion of the 16S rRNA gene (515F-806R) was amplified
with region-specific primers that included the Illumina

flowcell adapter sequences and a 12-base barcode se-
quence. Each 25 μl PCR reaction contained the following
mixture: 12 μl of MoBio PCR Water (Certified DNA-Free;
Mo Bio Laboratories), 10 μl of 5-Prime HotMasterMix
(1×), 1 μl of forward primer (5 μM concentration, 200 pM
final), 1 μl of Golay Barcode Tagged Reverse Primer (5 μM
concentration, 200 pM final), and 1 μl of template DNA
[41]. The conditions for PCR were as follows: 94 °C for 3
min to denature the DNA, with 35 cycles at 94 °C for 45 s,
50 °C for 60 s, and 72 °C for 90 s, with a final extension of
10min at 72 °C to ensure complete amplification. Ampli-
cons were quantified using PicoGreen (Invitrogen, Grand
Island, NY, USA) assays and a plate reader, followed by
clean-up using UltraClean® PCR Clean-Up Kit (Mo Bio
Laboratories) and then quantification using Qubit read-
ings (Invitrogen). The 16S rRNA gene samples were se-
quenced on an Illumina MiSeq platform (2 × 150
paired-end sequencing, V3 chemistry) at Argonne Na-
tional Laboratory core sequencing facility according to
Earth Microbiome Project (EMP) standard protocols [48].
To verify that no contamination occurred from the DNA
extraction kit, 45 PCR-amplified blank controls (i.e.,
empty extraction wells with only reagents and no input
material) were also sequenced along with the other 700
samples in each of the 16S rRNA gene runs. Further, due
to the large number of samples, the study sequences were
generated on three different sequencing runs. To limit
run-to-run influence, the samples were completely ran-
domized by the category (i.e., skin, gut, desk, etc.) of sam-
ple and additionally a set of samples (n = 18) were
sequenced on all three runs. The Shannon alpha diversity
values and beta diversity indices (weighted UniFrac) were
then compared for the overlapping samples between three
runs. We confirmed that the re-run samples within each
sample category between the different runs were not sig-
nificantly different (weighted UniFrac distance ≤ 0.07 in all
cases; ppermanova > 0.05). Sequences and metadata are pub-
lically available in the European Bioinfmatics Institute
(BioProject ID PRJEB26708) and in QIITA (ID 11740).

Sequence analysis
For 16S rRNA gene analysis, the 16 million paired-end
reads generated for total microbial samples collected (i.e.,
~ 5.3 million reads per sequencing run) were joined using
join_paired_ends.py script followed by quality-filtering
and demultiplexing using split_libraries_fastq.py script in
QIIME 1.9.1 [49]. Parameters for quality filtering included
75% consecutive high-quality base calls, a maximum of
three low-quality consecutive base calls, zero ambiguous
bases, and minimum Phred quality score of 3 as suggested
in Bokulich et al. [50]. The final set of demultiplexed se-
quences was then selected for amplicon sequence variant
(ASV) picking using the DeBlur pipeline [51]. In the pipe-
line, de novo chimeras were analyzed and removed,

Sharma et al. Microbiome            (2019) 7:70 Page 4 of 17



artifacts (i.e., PhiX) were removed, and ASVs with fewer
than 10 reads were removed. Each of the 45 blank controls
was assigned very low read counts (< 100 reads/sample) as
expected and hence were filtered out of the analyses. The
final BIOM file contained 2,170 samples (92% samples
retained) of 21,866 unique ASVs with an average of 7,372
reads per sample.
Analysis of the resulting BIOM files was completed in

QIIME 1.9.1, R 3.4.2 (phyloseq 1.23.1 and caret 6.0.79
packages), and SourceTracker (in QIIME 1.9.1). For 16S
rRNA gene sequences, weighted UniFrac distances [52]
were calculated using the ASV count data for the 2,170
samples collected over a period of 5 months from the par-
ticipants using beta_diversity.py script in QIIME 1.9.1.
In order to understand the convergence patterns be-

tween the individual’s microbiome and built environ-
ment features in small shared spaces (i.e., 21 rooms), the
distributions of weighted UniFrac distance values were
plotted as density plots using ggplot2 2.2.1 package (in
R) across 9 weeks of sampling. Pairwise comparisons
were generated for cadets that shared the same room
(roommates) and cadets that do not share the same
room (non-roommates). The non-roommates for these
comparisons were generated by pairing each cadet with
another randomly selected cadet from one of the four
squadrons who was not their roommate. Furthermore,
gut-gut and skin-skin microbiome convergence patterns
were also explored for the cadets who were (1) room-
mates and (2) non-roommates. Boxplots were generated
using geom_box() function in ggplot2 to investigate the
association and disassociation patterns between cadets’
microbiome profiles and the built environment micro-
biomes across shared common spaces of neighboring
squadrons. In addition, we compared the gut and skin
microbiome profiles of cadets living in neighboring
squadrons within the same building (i.e., squadrons 1
and 2, 3 and 4, and 19 and 20) to the built environment
samples belonging to squadrons 27 and 28 located in a
different building (800 feet away from the first building).
The significance of the convergence between sample cat-
egories was validated by performing nonparametric ana-
lysis of similarity (ANOSIM) [53] using vegan package
[54], which generated an R statistic and a p value, where
the R value is a statistic for compositional dissimilarity.
A lower R value indicates higher similarity. For testing
the significance of variability patterns of the weighted
UniFrac distances (generated between sample categories)
over the nine sampled weeks, PERMANOVA was per-
formed in vegan 2.5.1 package of R 3.4.2 [55].
The progressive changes in stability and diversity of

microbiomes over the course of sampling within subjects
were also evaluated using weighted UniFrac distance
matrix in R 3.4.2 [56]. For this, we initially calculated the
week-to-week variation (in pairwise manner) using

weighted UniFrac distance between same-subject sam-
ples in reference to each of the 9 weeks (e.g., week 1 vs
week 2, week 1 vs week 3…to…week 1 vs week 9, week
2 vs week 3, week 2 vs week 4…to….week 2 vs week 9).
The distances were then plotted as boxplots for each
week-wise comparison (paired) using geom_box() func-
tion in ggplot2. In reference to each week, the pairwise
variations were tested statistically using paired t test.
The differentially abundant bacterial ASVs between

gut-, skin-, and built environment-associated samples
(e.g., desk, dormitory room floor, and outdoor samples)
were determined through the analysis of composition of
microbiomes (ANCOM) pipeline [57]. Additionally, the
number of overlapping ASVs was determined pairwise
between different sample categories using subset_sam-
ples() and filter_taxa() functions in phyloseq package of
R by removing all the ASVs not found at least once in
both samples [58].
Random forest supervised learning models were used

to estimate the predictive power of microbial community
profiles to determine participant and room identity using
training data from skin, gut, dormitory room floor, desk,
and outdoor samples. For each sample type, all the nine
time points were aggregated for predicting participant
and room identity in order to have enough samples per
group to run a significant random forest model. The su-
pervised learning was performed employing two differ-
ent methodologies, i.e., using cross-validation sample
sets in caret package [59] and using out-of-bag (OOB)
sample sets in RandomForest package in R [60]. A train-
ing set with 70% of the total samples was used for learn-
ing models. The feature selection was crosschecked
through the recursive feature elimination function in the
caret package. Based on each sample category—skin,
gut, dormitory room floor, desk, and outdoor—the
cross-validation set (30%) was created from the original
dataset available for each sample category. Training was
accomplished in RandomForest with generation of 1000
trees and prediction accuracy was estimated. Further, in
order to supplement the prediction accuracies generated
from the validation set, a more robust estimate of
generalization error was calculated through OOB error
and accuracy (1-OOB) using RandomForest package.
The OOB error is an unbiased error rate that predicts
the class of a sample using a bootstrap training set with-
out that particular sample. For each training subset used
for learning of the models, one third of the samples were
left out of the bootstrap sets and hence OOB error was
estimated. A lower OOB error indicates a better ability
to classify that grouping by microbial community. Fi-
nally, RandomForest was used to annotate the top ten
most predictive bacterial ASVs for each of the sample
categories capable of discriminating between participants
and their rooms.
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For the SourceTracker models [61], the microbiome
profiles of participants’ gut and skin and built environ-
ment samples were taken for each room at a given sam-
pling week and consolidated by sample category. The
participants’ skin, gut, and outdoor samples were treated
as sources for environment sinks that included the desk
and dormitory room floor.

Results
The cohort consisted of USAFA cadets (college stu-
dents attending a military university), with a certain
homogenization of personal characteristics such as
lifestyle, diet, and age that are known to influence the
human microbiome. Participants did not report any
dietary restrictions, had similar sleep patterns per
night (mean ± standard deviation (SD); 6.35 h ± 0.86 h),
and were 19–21 years old (20.32 ± 0.69), and 92% were
male. Diet was not logged in this study but consists
of mainly the same family style meals for each par-
ticipant. Participants were able to select from the
food provided during each meal and had limited op-
tions for other food during the meals. However, par-
ticipants can consume other foods, mainly in the
form of snacks or on weekends while away from their
dormitory rooms. Nearly 25% of the participants were
NCAA Division one athletes and all have require-
ments to maintain physical activity during their time
at USAFA, leading to a relatively physically fit cohort.
The highly regulated schedule at USAFA requires all
cadets to be awake at nearly the same time in the
morning.

Overview of the microbiome of the built environment
and its occupants
Human and environmental sampling from 9 weeks be-
tween August 2016 and January 2017 provided 2,170
samples for analysis. Samples were human skin, human
gut, dormitory room desk, dormitory room floor, dormi-
tory hallway doorstop, dormitory hallway floor corner,
dormitory common area, dormitory bathroom handle,
and an outdoor window lintel. Alpha diversity differed
significantly between human and built environment (BE)
sample types (panosim = 0.001, Shannon), whereby the BE
samples were more diverse, followed by gut, and then
skin (Fig. 2a, Additional file 4). Alpha diversity was sig-
nificantly similar within each sample type over time
(pPERMANOVA ≥ 0.08).
The microbial community beta diversity of the single

outdoor location (window lintel) was significantly differ-
ent from the indoor surfaces (ppermanova = 0.01, weighted
UniFrac), while BE surfaces within a cadet dormitory
(i.e., desks and floors) were not significantly different
(ppermanova > 0.05, weighted UniFrac). The 20 most abun-
dant ASVs were significantly differentially abundant

across the sample categories (p < 0.05; Fig. 2c).
Gut-associated bacterial communities, the only anaer-
obic sampling location in the present study [62], formed
a distinct cluster (ppermanova = 0.01, NMDS ordination)
compared to the skin and BE samples (Fig. 2b). Skin and
BE samples were enriched in Streptococcus and
Staphylococcus (Fig. 2c), which is consistent with previ-
ous observations [8, 32, 63, 64]. Propionibacteriaceae
were present in low relative abundance in skin samples,
unlike other skin-associated studies [65–67], which is
most likely due to primer bias associated with the V4 re-
gion of the 16S rRNA gene [68].
Additionally, we identified differentially abundant

ASVs (pBH-FDR Corrected < 0.05) between nine sample
types, at each of the nine time points. We identified a
consistent bacterial signature associated with each sam-
ple type over all the time points. For instance, Coryne-
bacterium was enriched on both skin and bathroom
handle over time compared to other sample types, Bac-
teroides was at a significantly greater proportion in the
gut, Propionibacterium was more abundant on the skin
and bathroom handles, and ASVs belonging to order
Rickettsiales and Streptophyta were enriched in the out-
door samples (Additional file 5). We also identified ASVs
that were unique to particular sample types, especially
outdoor samples, and only with specific time points.
ASVs from genera Modestobacter (1.5%) and Cloacibac-
terium (1.1%) were significantly enriched in outdoor and
floor corner samples only at week 1 (Additional file 5).
An ASV belonging to family Acetobacteraceae (7.2%)
was also significantly enriched in outdoor samples at
week 1; Flavisolibacter (0.4%) was enriched in outdoor
samples in week 2; Micrococcaceae (0.4%) was enriched
in the dormitory room floor samples in week 3; ASVs
from Deinococcus (2.4%) and Methylobacterium (4.5%)
were significantly enriched in outdoor samples in week
4; an ASV from family Aeromonadaceae (14.7%) was sig-
nificantly enriched in outdoor samples at week 7. Genus
Oscillospira (0.74%) was found to be associated with gut
at weeks 8 and 9 (Additional file 5).
Overall, the bacterial signatures differentiating the sam-

ple type categories, i.e., dormitory room floor, desk, gut,
skin, and outdoor, were consistent in both the roommates
(n = 1504; all sample types) and non-roommate datasets
(n = 1016; all sample types) (Additional file 6). Across the
entire study, the relative abundance of ASVs between the
skin and built surfaces showed an R2 correlation of 0.59
(log2 of relative abundance; Fig. 3a). The skin samples
shared maximum numbers of ASVs with desk with no sig-
nificant decrease after the first break (10 days between
week 5 to week 6; p = 0.1); however, the number of shared
ASVs was reduced after the second break (22 days be-
tween week 7 to week 8; p = 0.03) (Fig. 3b). The sharing
between skin and dormitory room floor demonstrated a
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significant reduction (*pBH-FDR Corrected < 0.05) follow-
ing both breaks (Fig. 3b). A multigroup ANCOM re-
vealed ten bacterial genera that were significantly
differentially abundant across the skin, desk, dormi-
tory room floor, and outdoor samples (Fig. 3c). Propi-
onibacterium, Corynebacterium, Streptococcus, and
Staphylococcus were significantly more abundant in
the skin samples; Deinococcus, Methylobacterium, and
Flavosolibacter were significantly more abundant in
the outdoor samples, while the dormitory room floor
and desk samples were mostly enriched for Coryne-
bacterium, Staphylococcus, Enhydrobacter, and
Gemella (Fig. 3c). Gut samples, when compared to
both skin and built environment samples, contained
higher abundance of anaerobic genera including Bac-
teroides, Blautia, Coprococcus, and Ruminococcus
(Additional file 6). Meanwhile, the skin and built en-
vironment samples were significantly enriched with
Corynebacterium in addition to Staphylococcus and
Streptococcus.

Longitudinal changes to cadet skin and gut microbiome
Previous studies have reported similarity in skin microbial
community structure in cohabitating family members [31,
41, 69] and cohabitating partners [70, 71]. The skin micro-
biota from cohabitating roommates was significantly more
similar (ANOSIM R = 0.231, panosim < 0.05) compared to
non-roommates (ANOSIM R = 0.474, panosim < 0.01,
Fig. 4a). As observed in a previous longitudinal cohabit-
ation study [41], the amount of similarity was
non-standard across the study. In that study, Leung et
al.[41] hypothesized the difference in similarity between
cohabitating members might depend on personal factors.
The present study supports that similarity of skin micro-
biomes between cohabitating individuals and herein ex-
pands those results to non-related individuals. Specifically
for this study, the connection between roommates began
as we started sampling and the level of connections be-
tween the roommates may have gotten stronger or weaker
depending upon occupant behavior or other personal fac-
tors. Future longitudinal studies could investigate the

A B

C

Fig 2 Bacterial diversity analyses using 16S rRNA gene sequences. a Shannon alpha diversity within samples by sample category, i.e., human (skin
and gut), room-associated built environment samples (desk, outdoor, and dormitory room floor), and squadron-associated built environment
samples (bathroom handle, common usage area, high surface dust-door stop, and low surface dust-floor corner) based on the bacterial ASVs. b
Non-metric multidimensional scaling (NMDS) ordination plot showing variation among sample categories based on the weighted UniFrac distance
metric. c Distribution of top 20 most abundant ASVs across all the sample categories. Not all ASVs were assigned a genus-level classification; 14 ASVs
were assigned to a genus (“g”), 4 were assigned to an order (“o”), and 2 were assigned to a family (“f”)
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differences in the similarity of skin microbiomes between
cohabitating individuals in more depth and could register
the time individuals spend together and the proximity be-
tween the occupants.
The convergence patterns of the skin microbiome be-

tween the two roommates were significantly affected by
the mandatory evacuation of the dormitories during the
Thanksgiving and Winter Holiday breaks (ppermanova =
0.002, Fig. 4a). Immediately after the two breaks when
the cadets did not cohabitate (18 November 2016 to 28
November 2016; 11 December 2016 to 2 January 2017),
the similarity between the skin microbiota of roommates
was significantly reduced compared to before the breaks
(ANOSIM R = 0.569, panosim < 0.05 after the first break,
and ANOSIM R = 0.512, panosim < 0.05 after the second
break). Notably, after the second break, which was over
twice as long as the Thanksgiving break, the roommates’
skin microbial communities were the most dissimilar of
the entire study (ppermanova < 0.05; Fig. 4b). Likewise,
using within-cadet pairwise weighted UniFrac compari-
sons across the weeks, the skin microbiota from week 1
were most dissimilar when compared to the weeks im-
mediately following the breaks (pt test < 0.05, Additional

file 7). The reduction in skin microbial community simi-
larity after the break was limited to roommates (Fig. 4b).
Cadets who did not share a living space (randomized
pairwise comparison of non-roommates excluding the
designated roommate pairs) had no increased skin mi-
crobial similarity over time and no associated reductions
in similarity across the two breaks (Fig. 4a).
The gut microbiota of roommates was not affected by

the two break periods and also remained stable longitu-
dinally (ppermanova = 0.08, Fig. 4b). Non-roommate gut
microbiota were significantly different over the study
(ppermanova = 0.02, Fig. 4b), with an apparent reduction in
microbiome dissimilarity until the last week of the study.
The individual pairwise comparisons of weighted Uni-
Frac distances within the gut microbiota from week 1 to
the weeks after their breaks were significant after both
breaks (pt test < 0.05, Additional file 7).

Shared occupancy influences the BE microbiota
A qualitative overview of skin, gut, built environment,
and outdoor sample beta diversity values longitudinally
using NMDS ordination based on the weighted UniFrac
metric revealed a distinct cluster of gut samples across

A B

C

Fig. 3 Distinctive bacteria relative abundances across sample category and week. a Plot of log2-transformed average relative abundances in the
cadets’ skin and built environment samples for all ASVs. b Shared ASVs heatmap for skin and individual built environment samples, i.e., desk, dormitory
room floor, and outdoor across the temporal sampling series. Total samples week 1 = 1107, week 2 = 1207, week 3 = 1102, week 4 = 982,
week 5 = 1211, week 6 = 1431, week 7 = 1429, week 8 = 914, week 9 = 1149. c Differentially abundant genera between skin and built
environment samples as identified by ANCOM, which are then ranked from 1 to 10 (right to left) based on feature importance score based on random
forest models
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all nine sampled weeks (ppermanova < 0.05) (Additional file
8). The skin and built environment samples did not sig-
nificantly separate (ppermanova > 0.05; except for the out-
door samples), suggesting that the built environment
microbiota likely originate predominantly from the skin
(Additional file 8). Ordination of environmental samples
from squadron buildings revealed a tight clustering for
floor corner, squadron common area, and door stop
samples. The bathroom handle samples ordinated as a
separate group (ppermanova < 0.05) until the November
sampling, after which there was a visible blending (pper-
manova > 0.05) of bathroom handle samples with other
environment samples (Additional file 8).
The microbial communities found in the dormitory

rooms (i.e., roommates) were more similar to the skin

(ANOSIM, R = 0.312 for skin versus desk, R = 0.406 for
skin versus dormitory room floor, and R = 0.514 for skin
versus outdoor) than the gut microbiota of the occu-
pants (ANOSIM, R = 0.583 for gut versus desk, R = 0.612
for gut versus dormitory room floor, and R = 0.552 for
gut versus outdoor) (Fig. 5a, b, Additional file 9). The
higher similarity between skin and BE compared to gut
and BE was interestingly evident across the non-room-
mate dataset as well (Fig. 5c, d, Additional file 9). The
skin and surface microbiota were relatively more
similar to the occupants of a room relative to non-
roommates (Fig. 5b, d, Additional file 9). The weighted
UniFrac distances between gut and the BE for all of the
nine weeks of sampling did not significantly change for
roommates for the desk (ppermanova = 0.1) or outdoor

A

B

Fig. 4 Boxplots showing distribution of weighted UniFrac distances calculated between roommates versus between non-roommates collected
over 9 data points across a period of 5 months. a Skin-to-skin and b gut-to-gut comparison between two individuals sharing the same room
(roommates), individuals not having roommate association (non-roommates, i.e., randomly generated dataset in which each cadet was paired
with a cadet who was not their roommate), individuals in the neighboring squadrons (i.e., squadron pairs in the same building, i.e., 1 and 2, 3
and 4, 19 and 20), and individuals residing in squadrons in different buildings (i.e., above squadron pairs compared with squadrons 27 and 28
located in a different building, which is 400 feet away). PERMANOVA p values (ppermanova) are mentioned for longitudinal comparisons of
weighted UniFrac distances (skin versus skin or gut versus gut). Blue dashed lines represent the two vacations, which break the continuous
sampling points. Two asterisks over two time points (i.e., after the vacation) indicate that the difference between the UniFrac distance measures
at those specific time points is significant (p < 0.05) based on the PERMANOVA test. The dark lines inside the boxes of boxplots are medians and
“+” represents the mean
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(ppermanova = 0.3) (Fig. 5a, Additional file 9), which sug-
gests no significant distribution of gut bacteria to these
surfaces.
Additionally, the microbiome was analyzed to determine

the similarity between the gut or skin microbiota of ca-
dets, and that of squadron-shared built environment sam-
ples, which included a bathroom handle, door stop (high,
surface dust sample), floor corner (low, surface dust sam-
ple), and the common area vacuum sample (Fig. 6). After
quality filtering, there were not enough samples to provide
adequate statistical analysis for the last 2 weeks; hence, we
aggregated samples from the 2 to 8 January and 9 to 15
January into a single time point, i.e., 2 to 15 January
(Fig. 6). We compared the convergence patterns between

the microbial profiles of cadets and the BE across shared
common spaces of squadron pairs who had neighboring
hallways and resided in the same building (i.e., squadrons
1 and 2, 3 and 4, 19 and 20; all plotted together). The gut
samples showed significant microbial community conver-
gence over time with both the bathroom handle (pperma-

nova = 0.02) and floor corner (ppermanova = 0.01) only in
squadrons located in the same building (i.e., squadrons 1
and 2, 3 and 4, 19 and 20; Fig. 6a). Gut samples had a
greater similarity to the bacterial profile on the bathroom
handle (ANOSIM R = 0.392, panosim < 0.05) compared to
the floor corner samples (ANOSIM R = 0.512, panosim <
0.001) (Fig. 6a, c). The gut microbiota displayed significant
variation with the bathroom handle microbiota over the

A

B

C

D

Fig. 5 Boxplots showing distribution of weighted UniFrac distances calculated between human and built environment samples collected over 9
data points across a period of 5 months. Distribution of weighted UniFrac distances between a gut (both roommates) and built environment
samples associated with the dorm room (desk, dormitory room floor, outdoor), b skin (both roommates) and dorm room samples, c gut (non-
roommates) and dorm room samples, and d skin (non-roommates) and dorm room samples. Weighted UniFrac distances were calculated from
the dataset of 1,515 roommate samples and 1,263 non-roommate samples. n values in each panel indicate the total number of pairs used for
different sample categories in weighted UniFrac distance calculations. PERMANOVA p values (ppermanova) are labeled for the comparison of
weighted UniFrac distances (for each pair, i.e., human vs built environment) between the 9 weeks of sampling. Blue dashed lines represent the
two vacation breaks during which the cadets vacated the rooms. The dark lines inside boxplots are the medians and “+” represents the mean,
which in most cases overlapped with the medians
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duration of the study for both neighboring squadrons
(ppermanova = 0.02; Fig. 6a) and squadrons in different
buildings (ppermanova = 0.04; Fig. 6c) while the comparison
of the skin microbiota with the bathroom handle micro-
biota did not follow this trend (Fig. 6b, d). However, rela-
tive to the gut, the skin microbiota were more similar to
the bathroom handle at all the time points (weighted
UniFrac, ANOSIM R = 0.254, panosim < 0.05) (Fig. 6a, b).
The cadets’ skin microbiota was significantly similar to

the samples in the squadron common area, for the
squadrons in the same building (ANOSIM R = 0.289,
panosim < 0.05) (Fig. 6b). The squadron common area is a
space used for meetings and leisure activities for the ca-
dets in the same squadron. In addition, we compared
the gut and skin microbial profiles of cadets living in the
neighboring squadrons (abovementioned pairs) to the
BE samples belonging to squadrons 27 and 28 located in

a different building (400 feet away from the first build-
ing). The skin microbiome compared to common rooms
in different buildings did not show the same level of
microbiome similarity (ANOSIM R = 0.601, panosim >
0.05) (Fig. 6d). Indeed, no significant temporal conver-
gence was observed between any cadet’s gut and skin
microbiota (from squadrons 1 and 2, 3 and 4, 19 and 20)
and the surfaces in a different squadron building (27 and
28) that they did not inhabit (Fig. 6c, d).

Sources of the microbiome of the built environment
Each room was comprised of two desks (approximately
2 m apart), where each desk belonged to one occupant.
Sourcetracker analysis revealed the occupant’s skin
microbiota was a major source of ASVs to a cadet’s own
desk (37.8 ± 0.02%, Fig. 7), while their roommate con-
tributed significantly less (17.0 ± 0.01%, Fig. 7). In the

A

B

C

D

Fig. 6 Boxplots showing distribution of weighted UniFrac distances calculated between human and built environment samples collected over 8
data points across a period of 5 months in publicly shared spaces, i.e., squadrons. Distribution of weighted UniFrac distances between a gut and
built environment samples, i.e., squadron common area, floor corner (low surface dust sample), bathroom handle, and door stop (high surface
dust sample) for neighboring squadrons, b skin and built environment samples for neighboring squadrons, c gut and built environment for
squadrons located in different buildings, and d skin and built environment for squadrons located in different buildings. PERMANOVA p values
(ppermanova) are labeled for the comparison of weighted UniFrac distances (for each pair, i.e., human vs built environment) among the eight weeks
sampled. The dark lines inside the boxes of boxplots are medians and “+” represents the mean, which in most cases overlapped with the
medians. The neighboring squadrons are the ones within the same building and with adjacent hallways, i.e., squadron pairs 1 and 2, 3 and 4, 19
and 20. The comparisons for squadrons in different buildings are between the gut and skin microbiome profiles of cadets living in the
neighboring squadrons (abovementioned pairs) to the built environment samples belonging to squadrons 27 and 28 located in a different building
(400 feet away from the first building)
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long-term sampling, skin microbiota from both occu-
pants contributed a similar percentage to the compos-
ition of dust samples from the dorm room floor (28.5 ±
0.02%, i.e., sum total for both occupants, Fig. 7).
The outdoor microbiota contained a significantly

greater percentage of ASVs with an unknown source
(55.2 ± 0.03%). Longitudinally, the outdoor microbiota
contribution was greater early in the summer for all BE
sinks, which may have been due to an increase in open
windows in the dormitories as a result of an increase in
warm weather; however, the spike of outdoor bacteria
during January might have been from cadets opening
their windows to lower the indoor temperature or sim-
ply due to the reduction in occupant-supplied indoor
microbes during the break.

Prediction of occupants
We applied a random forest classifier to determine
whether the microbial community can predict an indi-
vidual or a specific room. Gut samples were 74% accur-
ate in identifying an individual from which they
originated (OOBgut = 0.26, 74% probability of classifying
a sample correctly when the sample was not used in
training the model), which contrasts with the skin
microbiota (OOBskin = 0.49, 51%, Additional file 10). The
desk-associated bacterial community predicted the cor-
rect occupant with 71% accuracy (OOBdesk = 0.29).
These results suggest that the desk maintains a microbial
signature that is more consistent over time compared to
the skin [63, 64, 72].
Additionally, we tested the diagnostic capacity of the

dormitory room floor and outdoor sample for predicting
the room from which they originated. As expected, the
dormitory room floor microbiota were able to predict
the room of origin with an accuracy of 81% (OOBcom-

mon_room = 0.19) (Additional file 10). Vacuuming the dust
that collects on the dormitory room floor provides a
sample of a long-term microbial signature and may be a

better sampling approach for the BE than surface swabs
for prediction of long-term occupancy [8]. The outdoor
samples, as expected, had a lower prediction accuracy of
the room’s identity (OOBoutdoor = 0.58, 42%) (Additional
file 10). For the gut-based RandomForest model (trained
to predict an individual’s identity), the top ten discrim-
inative features were assigned to the genera Prevotella,
Parabacteroides, Oscillospira, Bacteroides (caccae), Dial-
ister, and Butryicimonas. The predictive model for the
participant’s identity using skin microbiome data in-
cluded discriminative ASVs associated with Corynebac-
terium, Propionibacterium, Micrococcus, Actinomyces,
Aeromondaceae, and Acetobacteraceae. Similarly, a
desk-based training model for predicting rooms included
discriminative ASVs assigned to Corynebacterium, Aci-
netobacter, Anerococcus, Coprococcus, Rothia, and Lacto-
bacillus. The discriminative ASVs for the model
predicting room based on dormitory room floor data in-
cluded genera Pseudomonas, Macrococcus, Jeotgalicoc-
cus, Corynebacterium, and Aerococcaceae. Overall, built
environment-based RandomForest models for desk and
dormitory room floor shared discriminative features with
skin, which again indicated the connection between skin
and those built environment microbiomes.

Discussion
This longitudinal study enabled a detailed exploration of
the influence of lifestyle, diet, and architectural
homogenization of the microbial sharing between individ-
uals and with the BE. Within each sample type, the alpha
and beta diversity remained quite stable over time. While
roommates did not display a significant increase in the
similarity of either the gut or skin microbiota over time,
they were significantly more similar than non-roommates.
The desk-associated microbiota was significantly more
similar to the occupant that used that desk compared to
any other cadet, while the shared floor space between the
beds was more similar to both roommates than to any

Fig. 7 Sourcetracker analysis shows the sources of bacteria found on built surfaces. The surfaces include the dormitory room floor and occupant-
specific desks (i.e., desk1, desk2). The four sources include the two occupants’ skin and gut samples and the outdoor surface (which is representative of
external environment microbiota)
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other cadet. In a longitudinal study of the built environ-
ment prior to and post-opening of a hospital, an increase
in alpha diversity was observed in samples taken from lo-
cations with human skin contact [9]. In the present study,
the cadet rooms were previously occupied and therefore
the surfaces likely held residual microbial biomass origin-
ating from prior occupants.
Similar to the skin, the gut microbiota of all of the

roommates did not converge across the study. We have
no rational explanation for the observed congruity in the
gut microbiota observed by a subset of cadets as they
shared no specific traits that would suggest similarity.
The gut microbiome did not appear to be a substantial
source of bacteria to most BE surfaces, with the excep-
tion of bathroom handles. The result here of transfer of
gut microbiome to the restroom door handle was not
observed in the Flores et al. [73] restroom study, though
that study did not have a longitudinal design. It is pos-
sible the transfer of the gut microbiome is a slow
process that can be detected only after multiple weeks.
Despite the decreased dissimilarity between the gut
microbiome and the restroom door handle, the domin-
ant microbiome on the restroom door handle was still
the skin microbiome as observed by Flores et al. [73]. It
is unlikely the skin microbiome was directly transferred
from the antecubital fossa to the door handles, but in-
stead consisted of microorganisms from that hand that
are shared with the sampling site in the present study.
Gut-associated microbiota were enriched in Bacter-

oides (70% of the top 20 ASVs), which is consistent with
other Western adult microbiome studies [42, 44], and
may be suggestive of a Westernized animal-based diet
[45]. All of the cadets that responded to the initial sur-
vey (74% response rate) indicated they were not vegetar-
ian or vegan (n = 25). In summary, cohabitation and the
homogenization of lifestyle, activity, and diet were not
major drivers of gut microbiome dynamics.
There were two breaks (vacations) during the semester

when the cadets were required to vacate their rooms.
These breaks enabled observation of temporal microbial
stability following the absence of the occupants. Indeed,
the absence and its duration were both associated with
significant shifts in the human microbiota, but also in
the similarity between the skin and BE surface micro-
biota, which had significantly declined immediately after
each vacation. This is likely due to either the acquisition
of new skin-associated bacteria during the break, a re-
duction in bacterial sharing between occupants or re-
duced exposure to the lifestyle, diet, and activity
homogenization while at the academy [74]. While it is
potentially more likely that a reduction in sharing and
homogenization could have influenced the similarity, it
is also possible that the skin microbiota could have been
altered by the environments that cadets interacted with

during the vacation, as geography can influence the hu-
man microbiota [14, 23, 75]. However, the gut micro-
biota were not influenced by the vacations, which
suggests remarkable longitudinal stability in the face of a
substantial reduction in diet and activity homogeneity
(especially during Thanksgiving and Winter Holiday,
which usually are associated with substantial food con-
sumption). Previous studies have also reported highly
stable gut microbiota over time [76].
The human-associated bacterial profile was highly pre-

dictive of the individual, with gut microbiome more pre-
dictive than the more variable skin microbiota. Within a
dormitory room, the desk microbiota was able to predict
the cadet that most regularly interacted with it almost as
well as the cadets’ gut microbiota predicted them; mean-
while, the floor between the cadets’ beds could predict
the two cadets that lived in that room with over 80% ac-
curacy. The desks were swabbed in entirety once per
week, providing a composite temporal sample, while the
floor sample comprised vacuumed dust. Interestingly,
the floor and the desk were not new when the cadets
moved in, and so, may have contained bacteria from the
prior occupant, as has been seen in hospital rooms [9].
The relative abundance of bacterial ASVs was signifi-

cantly correlated between the skin and the BE samples,
and those surfaces with which an individual cadet inter-
acted shared a more personalized subset of the skin bac-
teria of that cadet. However, skin samples were swabbed
from the antecubital fossa (inner elbow), whereby des-
quamation is the most likely cause of microbial dissem-
ination, as opposed to direct physical interaction with a
BE surface. An alternative, already mentioned above in
the new text, is that there are shared microorganisms in
the antecubital fossa and skin surfaces that touch the
desk. Overall, the gut microbiota was significantly more
similar to the bathroom door handle, which might sug-
gest direct contact with the hands of the cadets follow-
ing their use of the bathroom. Yet, the bathroom handle
was sampled on the exterior of the door, likely contacted
prior to using the bathroom indicating persistent gut mi-
croorganisms on the hands or a lack of cleaning over
time. The door handle being on the exterior was pre-
sumably not heavily influenced by resuspension of gut
microorganisms that may have settled in the bathroom.
As in many college dormitories, cadets at USAFA are
free to use any bathroom and each floor has several
available to use; as such, there is no way to identify those
that deposited these samples on the door handles. Over-
all, the microbiota in common rooms used for training
and social activities were more similar to the skin micro-
biota of cadets that lived in that building than those oc-
cupying the other building.
Limitations of the study include a large sampling effort

of over 5,000 samples that required multiple sequencing
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runs. Previously, others have noted a run-to-run vari-
ation in sequencing [14], which was not observed in this
study based on the analysis conducted. The present
study also was limited by one skin site that is not dir-
ectly in contact with the built environment. The antecu-
bital fossa was chosen due to its relatively stable
microbiome over time, in comparison to the highly vari-
able hand microbiome [77]. Sampling the microbiome of
other skin sites might have resulted in different findings.
Finally, the study design required gathering informed
consent when the cadets returned from summer break
and moved into their new rooms with different room-
mates. It took several days to consent all of the partici-
pants, and therefore, the study did not have an initial
baseline before roommates started to live together. To
alleviate that known issues, the study did sample over
100 locations in the built environment at USAFA prior
to the cadets’ occupancy. Unfortunately, an error in
shipping results in a loss of all of those samples.
Strengths of this study include homogeneity of the

sampling population in terms of lifestyle, diet, activity
levels, age, physical condition, and occupation. Although
those measures were not completely uniform, this study
does represent a unique cohort that limited bias in the
microbiome compared to other human microbiome ef-
forts. Additionally, the extraction processes, primers,
and sequencing technology were chosen to maximize
the ability to conduct comparisons between this study
and other research in the field. Likewise, human and
built environment sampling locations were selected
based on previous research conducted multiple labora-
tories to again allow comparisons between studies. Fi-
nally, the study included temporal changes over a
6-month period in multiple built environment and hu-
man microbiome sampling sites which enabled some de-
termination of microbiome stability and increased the
ability to investigate causes of longitudinal microbiome
perturbations.

Conclusions
This 5-month longitudinal microbial analysis of USAFA
cadets and their BE indicates a significant microbial dis-
persion from the host to the BE. The degree of inter-
action an individual has with a particular surface will
significantly increase their microbial sharing with that
surface. Despite no clear temporal convergence, cohabi-
tating roommates had greater skin-associated microbial
community similarity when compared to non-cohabiting
individuals in the same building. While the gut micro-
biota is quite stable over time, perturbation in diet and
lifestyle associated with vacations had a significant im-
pact on the skin microbiota. Overall, the gut microbial
profile was more predictive of a person’s identity than
the skin microbiota; also, the desk and floor were

predictive of which cadets lived in that room. Human
Microbiome-Wide Associations Studies [78] use statis-
tical approaches to identify microbial taxa or functions
that are associated with disease or health. Identifying
such organisms in the BE will require much more re-
fined assessments of the health of occupants, which was
not attempted in this study. Future work will attempt to
determine if the microbial sharing observed between oc-
cupants, and with the BE, has any impact on the health
or behavioral characteristics of the cadets. If so, then it
is possible that the microbial traits of the environment
could be manipulated to augment health outcomes [2,
39, 79] with skin microbiome as a preliminary target for
researchers in the short term.
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