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Nomenclature
χ: Heading angle (radians); ∆xy: Horizontal separation distance 

(ft); ∆z: Vertical separation distance (ft); δ: Overestimation error; 
∈: Sigmoid exponential; γ: Flight path angle (radians); λ: Lagrange 
multiplier; g: Inequality constraint; u: Control; x: State trajectory; μ: 
Bank angle (radians); φ: Terminal cost function; ψ:  Equality constraint; 
τ: Time transformation; g: Gravity constant ( ft/sec2); H: Hamiltonian; h: 
Horizontal constraint (ft); J: Performance measure; L: Cost function; N: 
Superellipse exponential; Nz: Normal acceleration; S: Sigmoid values; s: 
Sigmoid stiffness; TCPA: Time to closest point of approach (CPA) (sec); 
V: Ground speed (ft/sec); v: Vertical constraint (ft)

Introduction
Under the Federal Aviation Administration (FAA) Modernization 

and Reform Act of 2012, the United States Congress tasked the FAA to 
“provide for the safe integration of civil unmanned aircraft systems into 
the national airspace system” [faa_reform_act]. A means to meet this 
integration mandate is through the use of algorithms that autonomously 
generate optimal collision avoidance trajectories to satisfy current FAA 
regulations that mandate passing aircraft meet either a minimum 
horizontal or vertical separation distance. A number of works have 
looked at trajectory planning and optimization for air vehicles using 
optimal control problem formulations Raghunathan [1], Eele [2], Horn 
[3] and some, such as Geiger [4] have even demonstrated this method
in flight on a small-size unmanned vehicle. However, a potential
limitation of this method is enforcing conditional inequality constraints 
such as maintaining either a minimum horizontal or vertical separation 
distance from an approaching aircraft or complying with FAA right of
way (ROW) rules. For example, according to FAR 91.113 if two aircraft 
are approaching nearly head on, then “each aircraft shall alter course to
the right.” Optimal control problems are often solved using gradient-

based numerical nonlinear programming (NLP) solvers which require 
smooth differentiable constraints; however, conditional constraints are 
not always differentiable, and thus can cause gradient-based numerical 
solvers to fail. This paper proposes and analyzes two different methods 
to address the issue of non-differentiable conditional inequality path 
constraints. The first approach is based on a minimum area enclosing 
superellipse (MAES) function and the second is based on the use of 
sigmoid functions. Both of these approaches are differentiable, allowing 
the NLP solver to calculate gradients and find an optimal solution.

Standard methods for implementing conditional inequality 
constraints can be classified as indicator methods, including Big M 
Borrelli [5], Winston [6] and active set Hintermuller [7] methods, and 
mixed-norm methods Sadovsky [8]; however, these methods are not 
everywhere-differentiable, and therefore, they often cause gradient-
based NLP solvers to fail to generate an optimal solution. For instance, 
Big M methods implement “either-or constraints” Winston [6] using 
a binary indicator variable along with a sufficiently large constraint 
variable (M); thus, constraints become non-differentiable with respect 
to the binary indicator variable. Similarly, active set methods use the 
conditional constraints to define sub-sets of feasible solutions and then 
optimize over each sub-set when it is indicated as the active set. However, 
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Abstract
Current Federal Aviation Administration regulations require that passing aircraft must either meet a specified 

horizontal or vertical separation distance. However, solving for optimal avoidance trajectories with conditional 
inequality path constraints is problematic for gradient-based numerical nonlinear programming solvers since 
conditional constraints typically possess non-differentiable points. Further, the literature is silent on robust treatment 
of approximation methods to implement conditional inequality path constraints for gradient-based numerical nonlinear 
programming solvers. This paper proposes two efficient methods to enforce conditional inequality path constraints in 
the optimal control problem formulation and compares and contrasts these approaches on representative airborne 
avoidance scenarios. The first approach is based on a minimum area enclosing superellipse function and the second 
is based on use of sigmoid functions. These proposed methods are not only robust, but also conservative, that is, 
their construction is such that the approximate feasible region is a subset of the true feasible region. Further, these 
methods admit analytically derived bounds for the over-estimation of the infeasible region with a demonstrated 
maximum error of no greater than 0.3%  using the superellipse method, which is less than the resolution of typical 
sensors used to calculate aircraft position or altitude. However, the superellipse method is not practical in all cases to 
enforce conditional inequality path constraints that may arise in the nonlinear airborne collision avoidance problem. 
Therefore, this paper also highlights by example when the use of sigmoid functions are more appropriate. 
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end

if  ∆z(i)>820 

vsep(i)=1 

end

end 

1 - [hsep+vsep] ≤ 0 inequality path constraint, ∈n                                    (3)

This definition for the conditional inequality path constraint 
in equation (3) was evaluated using two different gradient-based 
NLP solvers, IPOPT and SNOPT; however, as expected, due to the 
non-differentiable conditional constraint caused by the logic ‘if 
statements’, both solvers failed to converge to a solution since they 
could not determine a gradient direction to search in order to find an 
extremal point. Therefore, an alternate approach is needed to enforce 
a conditional constraint without the use of logic ‘if statements’. The 
two approaches analyzed in this paper are (1) MAES and (2) sigmoid 
functions to approximate inequality path constraints for the optimal 
control problem. The next sections describe these two approaches. 

Minimum area enclosing superellipse (MAES)

The equation for a superellipse appears as: 

= 1   +   
   

N Nx y
a b

	                                                                        (4)

where a  and b represent the semi-major and semi-minor axes of 
the superellipse while N ≥ 2  is an even number  Weisstein [11]. The 
equation for the area of a superellipse Farrell [12] appears as: 

Area=4abc (N)	                                                                                           (5)

where C(N) is a ratio of gamma functions of N defined as described 
by Farrell: 

( )

2
11

=
21

  Γ +    
 Γ + 
 

N
C N

N

	                                                        (6)

Additionally, a superellipse that encloses a rectangle with length 
(2h) and width (2v) centered at the origin must intersect each of 
the 4 corners of the rectangle. That is, the minimum area enclosing 
superellipse must satisfy, 

=  1

=  1

=  1

=  1

+ +   +   
   

− +   +   
   

+ −   +   
   

− −   +   
   

N N

N N

N N

N N

h v
a b

h v
a b

h v
a b

h v
a b

	                                                                       (7)

Since N must always be an even number, all 4 constraint expressions in 
equation (7) are equivalent. Furthermore, since   4C(N) in equation (5) is 
not a function of a or b, the optimization problem to determine the semi-
major and semi-minor axes values,  a* and b* respectively, that minimize 
the area of an enclosing superellipse for any even N ≥ 2 reduces to:

these methods are not well suited for dynamic conditional constraints 
such as the time varying airborne collision avoidance problem since the 
continuous-time constraints implicitly define an uncountable number 
of feasible sub-sets, while discretizing the constraints introduces an 
implicit or explicit binary indicator variable equivalent to those in Big M 
methods [7]. In addition, mixed-norm methods typically formulate a set 
of conditional constraints as a single constraint involving the maximum 
of a set of norms from each conditional constraint Sadovsky [8]; thus, 
the constraint’s derivative at a point is a function of the derivative of 
the norm that obtains the maximum value at that point. Therefore, 
if the mixed set of norms do not have identical derivatives at points 
where the maximum norm changes from one norm to another in the 
set, the mixed-norm formulation will not be everywhere-differentiable. 
In the context of collision avoidance, Raghunathan [1] devised a 
novel approach for enforcing a conditional inequality constraint 
of maintaining either a minimum horizontal or vertical separation 
distance from an approaching aircraft; however, their approach did 
not address situations with more than two conditional constraints and 
required the introduction of an additional control variable appended to 
the objective function. An approach that is similar to the methods in this 
paper is known as artificial potential fields or functions, or APF. While 
APF methods are differentiable Ren [9], Paul [10] they do not truly 
enforce conditional inequality constraints. Instead, APF methods treat 
path constraints as “soft” obstacles and incorporate them as weighted 
penalties in the cost function which may result in generating infeasible 
trajectories [9]. However, the methods proposed in this paper provide 
conservative and differentiable approximations for indicator methods 
as well as mixed-norm methods, thus ensuring differentiability for the 
gradient-based NLP solver while maintaining feasibility for the optimal 
control problem.

The overview of the paper is as follows: First we introduce and 
develops the MAES and sigmoid conditional constraint approximation 
methods. The next sections describe and then analyze the simulation 
results from the two example problems in this paper. The final section 
summarizes the results.

Conditional Inequality Constraint Approximation 
Methods

This section begins by introducing the first of the two example 
problems in this paper to properly motivate the development of the 
conditional constraint formulation methods presented herein. In the 
first example problem, the objective is for the ownship to minimize 
deviations from a 3D flight path corridor while maintaining either a 
horizontal separation distance (∆xy) of at least 2460  ft or a vertical 
separation distance (∆z) of at least 820 ft from an intruder aircraft 
where1: 

2 2
intruder ownship intruder ownship= ( ) ( )∆ − + −xy x x y y 	                 (1)

intruder ownship=| |∆ −z z z 	                                                                       (2)

Using logic ‘if statements’, this inequality constraint formulation 
appears algorithmically as:

for each collocation node  i= 1 to n

if   ∆xy (i) > 2460 

hsep(i)=1 

1The distances 820 ft (250 m) and 2460 ft (750 m) are assumed as initial planning 
guidance for developing avoidance algorithms to support the integration of remotely 
piloted aircraft into the NAS.
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Minimize ab 

such that ( ) ( ) = 1+N Nh v
a b

, where  a,b ≥ 0  

It is easy to verify that the values a*=21/N h  and b*=21/N v satisfy the 
first-order KKT and second-order sufficiency conditions for optimality. 
Therefore, the equation of the minimum area superellipse that encloses 
the minimum separation rectangle appears as: 

= 2   +   
   

N Nx y
h v

	                                                                         (8)

where h and v represent the minimum horizontal and vertical 
separation distance constraint, respectively.

Raising the exponential term, N, in equation (8) to higher-order 
even powers causes the superellipse to appear increasingly rectangular. 
Figure 1 graphically shows the results of increasing the exponential 
terms in equation (8). In this figure, the x-axis represents the horizontal 
separation constraint (∆xy) and the y-axis the vertical separation 
constraint (∆z). The red dashed lines depict the minimum separation 
distance of   ± 2460  ft and ±820  ft in the horizontal (h) and vertical (v), 
respectively. 

From Figure 1, in the limit as  N→∞ the superellipse approaches the 
rectangular conditional constraints. Substituting x and y in equation (8) 
with ∆xy and ∆z, respectively, gives the superellipse equation as: 

= 2∆ ∆   +   
   

N Nxy z
h v

	                                                                            (9)

Note that, 
1

1

= 2 = 2lim lim
→∞ →∞

 ∆ ∆ ∆ ∆       + ⇔ +                 

N N N N N
N

N N

xy z xy z
h v h v

    (10)

Furthermore Luenberger [13];

 1

max ,lim
→∞

 ∆ ∆ ∆ ∆     +             

N N N

N

xy z xy z
h v h v



	                 (11)

Therefore, if the mixed-norm is defined as described by Sadovsky 
in 2012: 

mixed, max ,∆ ∆ ∆ ∆   
  

   
xy z xy z
h v h v

  

	                  (12)

Then in the limit as N→∞ the superellipse equation (9) is equivalent 
to the dashed-red rectangle in Figure 1 given by the mixed-norm 
equation: 

 
mixed, = 1∆ ∆ 

 
 

xy z
h v

 

                                                                       (13)

since, 
1

1

max , = 1 = 2 = 1lim lim
→∞ →∞

 ∆ ∆ ∆ ∆     ⇔ +             

N N N
N

N N

xy z xy z
h v h v

   (14)

An advantage of using a MAES to approximate the conditional 
inequality constraint is that since the semi-major and semi-minor 

axes are defined as 1
* = 2Na h  and 1

* = 2Nb v , respectively, the 

overestimation errors (δh and δv) for infeasible values of ∆xy and ∆z are 

bounded such that: 	

( )
( )

1/

1/

0  2 1

0  2 1

δ

δ

≤ ≤ −

≤ ≤ −

N
h

N
v

h

v
	                                                     (15)

From equation (15), for given h and v  the MAES overestimation 
error is strictly a function of N. For the example in this paper, the MAES 
method used a value of  N=200, resulting in a maximum overestimation 
error of 0.3%, which is less than the typical resolution of an aircraft’s 
onboard sensors used to calculate position or altitude. Therefore, 
system designers should select the appropriate value of N based on 
sensor resolution. The minimum value of N necessary to guarantee the 
overestimation error is less than the sensor tolerance, ∆s, is given by the 
smallest even number that satisfies the following relationships: 

ln 2  
ln 1

ln 2  
ln 1

≥
∆ + 

 

≥
∆ + 

 

s

s

N

h

N

v

	                                                                       (16)

For example, if ∆s=12  feet while  h=2460 feet and v=820  feet, then: 

ln 2  = 142.44
12ln 1

2460
ln 2  = 47.71
12ln 1
820

≥
 + 
 

≥
 + 
 

N

N
                                                        (17)

Therefore, N would be set to 144.

However, for large values of N, constraints involving the equation 
of the superellipse become computationally difficult to evaluate. This 
issue of constraint scaling is addressed by applying the natural log on 
equation (8) to generate the equivalent equation of the minimizing 
enclosing superellipse. The adapted equation appear as: 

ln = ln 2
2460 820

 ∆ ∆   +         

N Nxy z                                                               (18)

Therefore, the standard form of the inequality path constraint for 
the optimal control problem appears as: 

ln 2 ln 0
2460 820

 ∆ ∆   − + ≤         

N Nxy z 	                                                     (19)

Equation (19) is the form of the MAES method used with equations 

Figure 1: Approximating conditional inequality path constraints.
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(1) and (2) at each collocation node to solve the first example problem 
in this paper. However, it may be impractical to apply the MAES 
method to optimal control problems with multiple, compound (or 
nested) conditional inequality constraints, represented by the second 
example problem. To address this limitation, the next section develops 
differentiable approximations of indicator methods using a sigmoid 
function form of the conditional inequality path constraint.

Sigmoid function

Another approach to incorporate a conditional constraint is to use 
a sigmoid function approximation of a conditional indicator function. 
The earlier section described the problem that gradient-based NLP 
solvers have with non-differentiable conditional constraints. Like 
the MAES, sigmoid functions avoid this problem since they too are 
continuous and differentiable. Framing the development in the context 
of the first example problem, two unique sigmoid functions are defined 
to approximate the horizontal and vertical inequality path constraint 
indicator functions separately. The equations for the horizontal and 
vertical sigmoid functions, Sh and Sv, that approximate the inequality 
path constraint indicator functions appear as: 

1
1

2460( , ) = 1
−∆ − 

 
 

∆ + 
  

xysh
h hS xy s e                                                          (20)

1
1

820( , ) = 1
−∆ − 

 
 

∆ + 
  

zsv
v vS z s e                                                              (21)

where sh and sv are user-defined positive stiffness factors for the 
smoothness and orientation of their respective sigmoid. Figure 2 shows 
the results of plotting equations (20) and (21) for varying values of 
positive sh and sv. Negative values of sh and sv merely reflect the image 
of the sigmoid function about the critical values (2460 and 820). From 
Figure 2, when ∆xy=2460  or ∆z=820 the value of the respective sigmoid 
equals 0.5. When ∆xy < 2460 or ∆z < 820 then the value of the respective 
sigmoid approaches zero. Likewise, when  ∆xy > 2460 or ∆z > 820, 
the value of the respective sigmoid approaches unity. Therefore, the 
sigmoid functions define the inequality constraint indicator function 
approximations which appear as: 

1, 2460
( , > 0)

0, otherwise

0, 2460
( , < 0)

1, otherwise

∆ ≥
∆ ≈ 


∆ ≥

∆ ≈ 


h h

h h

xy
S xy s

xy
S xy s

	                                                       (22)

1, 820
( , > 0)

0, otherwise

0, 820
( , < 0)

1, otherwise

∆ ≥
∆ ≈ 


∆ ≥

∆ ≈ 


v v

v v

z
S z s

z
S z s

	                                                     (23)

This paper proposes and evaluates two different methods of 
using these sigmoid functions (a sum and then a product method) 
to approximate the conditional inequality path constraint. The first 
method involves summing the horizontal and vertical sigmoid values 
and the second involves taking the product of these two sigmoids. The 
following sections detail both methods where for convenience of notation, 
the exponential terms in equations (20) and (21) are defined as: 

= 1
2460

ε ∆
−h

xy
	                                                                                      (24)

= 1
820

ε ∆
−v

z
	                                                                                      (25)

Sigmoid sum method: The sigmoid sum method is the more 
conservative of the two sigmoid methods. Given the conditional 
inequality path constraint of satisfying either a horizontal (h) or vertical 
(v) separation distance constraint, the sigmoid sum approximation of 
the conditional inequality path constraint appears as: 

1 [ ( , ) ( , )] 0− ∆ + ∆ ≤h h v vS xy s S z s 	                                                   (26)

Where sh and sv are always positive. Therefore, if ∆xy < 2460 and ∆z 
< 820, then equation (26) is greater than zero. Thus, the sigmoid sum 
approximation method does not admit solutions that violate the true 
conditional inequality path constraint. However, if ∆xy > 2460  while 
∆z < 820 or ∆xy < 2460   while ∆z > 820  then equation (26) may still 
be greater than zero, and thus, this method could fail to admit viable 
solutions that satisfy the true conditional inequality path constraint. 
The tolerance for when viable solutions are not admitted is a function 
of the user defined stiffness factor s. The relationships that determines 
if the sigmoid sum method will admit a viable solution are given by 
equations (27) - (29).

If ∆xy ≥ 2460  and ∆z ≥ 820 then, 

0
0

ε
ε

≤
≤

h

v

                                                                                                     (27)

which implies that Sh (∆xy, sh) ≥ 0.5  and   Sv (∆z, sv) ≥ 0.5 so equation 
(26) is correctly satisfied.

If ∆xy ≥ 2460  and  ∆z < 820 then, 

0
> 0

ε
ε

≤h

v

                                                                                                        (28)

which implies that Sh (∆x, sh) ≥ 0.5  and  Sv (∆z, sv) < 0.5 so equation 

(26) is correctly satisfied if and only if | |ε ε≤ h
v h

v

s
s

.

If ∆xy < 2460 and ∆z ≥820  then, 

> 0
0

ε
ε ≤

h

v

	                                                                                       (29)

which implies that  Sh (∆xy, sh) < 0.5  and  Sv (∆z, sv) ≥ 0.5 so equation 

(26) is correctly satisfied if and only if | |ε ε≤ v
h v

h

s
s

.

Equations (27) - (29) guarantee that the sigmoid sum method will 
only reject feasible solutions if one constraint is violated by more than 
the slack of the satisfied constraint times the ratio of the two stiffness 
factors. Furthermore, in the worst-case when ∆z=0  then ∈_v = 1, so the 
minimum value of ∆xy that will satisfy the sigmoid sum approximation 
of the conditional inequality constraint is given by the following relation: 

if = 0, then
1 [ ( , ) ( , )] 0

(1 )

∆
− ∆ + ∆ ≤

⇐ ∆ ≥ +

h h v v

v

h

z
S xy s S z s

s
xy h

s

                                                                 (30)

Figure 2: Horizontal and vertical separation sigmoid functions.
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Similarly, in the worst-case when  ∆xy=0  then εh=1, so the minimum 
value of ∆z that will satisfy the sigmoid sum approximation of the 
conditional inequality constraint is given by the following relation: 

if = 0, then
1 [ ( , ) ( , )] 0

(1 )

∆
− ∆ + ∆ ≤

⇔ ∆ ≥ +

h h v v

h

v

xy
S xy s S z s

s
z v

s

                                                         (31)

Equations (30) - (31) indicate that the worst-case overestimation 
error can be very large. Additionally, the complexity of the sigmoid sum 
approximation surface indicates that NLP solvers could have difficulty 
estimating the gradient of the constraint (Figure 3). Therefore, a second 
sigmoid function method which reduces much of the overestimation 
error and improves differentiability is described next.

Sigmoid product method: Compared to the sigmoid sum 
method, the sigmoid product method allows greater precision in 
approximating conditional inequality constraints by reducing the 
maximum overestimation error that occurs when only one constraint is 
satisfied. Given the conditional inequality path constraint of satisfying 
a minimum horizontal (h) or vertical (v) separation distance constraint, 
the sigmoid product approximation of the conditional inequality path 
constraint appears as: 

[sh (∆xy, sh) sv (∆z, sv)] - 0.25 ≤ 0                                                         (32)

where sh and sv are now both negative. The relationships given by 
equations (27) - (29) in the sigmoid sum method also determine if the 
sigmoid product method will admit a viable solution. However, for the 
sigmoid product method, if the horizontal constraint is satisfied but the 
vertical is not, that is, ∆xy ≥ 2460  and  ∆z < 820 then equation (32) is 
correctly satisfied if: 
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Similarly, if ∆xy < 2460  and ∆z ≥ 820, then equation (32) is correctly 
satisfied if: 
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In the worst-case when ∆z=0, then the minimum value of ∆xy that 
will satisfy equation (32) is given by the following relationship: 
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However, 0→sve  as  sv→ -∞, so equation (35) can be approximated 
conservatively as: 
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Likewise, when ∆xy=0, then the minimum value of ∆z  that will 
satisfy equation (32) is given by the following relationship: 
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which can also be approximated conservatively as: 
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Therefore, the sigmoid product method bounds the overestimation 
errors (δh and δv) for infeasible values of ∆xy and ∆z  such that:
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From equation (39), the maximum overestimation error is strictly 
a function of | |hs  and | |vs . Due to the computational difficulty 
resulting from large exponential powers, with 40 fixed collocation nodes 
the largest absolute values for the sigmoid product parameters that 
were achieved were | |= 240hs  and | |= 80vs . With these values the 
maximum overestimation error was 0.5% in the horizontal and 1.4% in 
the vertical. These values are much lower than the sigmoid sum method 
while comparable to the maximum overestimation error obtained in 
the MAES method. As with the MAES method, system designers can 
select the appropriate value of sh and sv based on sensor resolution. The 
minimum values of | |hs  and | |vs  necessary to guarantee that the 
overestimation error is less than the sensor tolerance,  ∆s, are given by 
the following relationships: 
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	                                                                          (40)

Since  h=2460  and v=820 in the example problem, the minimum 
value of | |hs  needed to achieve a given tolerance will be 3 × greater 
than the minimum value of | |vs  needed to achieve the same tolerance.

Additionally, Figure 3 shows the normalized 3D constraint contour 
plots for the sigmoid sum and product methods for stiffness values of 
s=4  and 64 where s=sh=sv. The blue-colored area in the figure represents 
the feasible region where at least one constraint is satisfied and the red-
colored area represents the infeasible region where neither constraint 
is satisfied. The thin black line on the constraint surface represents the 
true feasibility threshold and the thicker dashed line represents the 
conservative approximation to the feasibility threshold. For the sigmoid 
sum method the inequality constraint values, equation (26), range 
between ± 1 where negative values indicate at least one constraint is 
satisfied and values above 0.5 indicate neither constraint is satisfied. In 

Figure 3: 3D constraint contour comparison of sigmoid sum and sigmoid 
product methods.
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the sigmoid product method the inequality constraint values, equation 
(32), range between -0.25 and 0.75 where negative values indicate at 
least one constraint is satisfied and values above 0.25 indicate neither 
constraint is satisfied. Therefore, to compare the two sigmoid methods 
the constraint contours (g*) in Figure 3 are normalized using: 

* min

max min

=
−

−
g gg

g g
	                                                                          (41)

such that the constraint contour plots for both methods range 
between 0 and 1 where 0 indicates at least one constraint is satisfied 
and 1 indicates neither constraint is satisfied. During the optimization, 
the gradients of these constraint surfaces need to be calculated. Clearly, 
the sigmoid sum gradient is more complex due to the “stair-steps” and 
“sharp valleys” in the contour plots and thus is more difficult for the 
optimizer to establish the correct search direction. Subsequently, as 
shown in the analysis and confirmed by the results, the sigmoid product 
method is more efficient and allows higher stiffness values compared 
to the sigmoid sum method. Thus, the sigmoid product method was 
selected for use in the general case to resolve optimal control problems 
with multiple, compound (or nested) conditional inequality constraints. 
For problems of this type, it is necessary to use the generalized form of 
the sigmoid product constraint formulation given by: 
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where K is the total number of conditional constraints being 
evaluated,  gk ≤ max{gk} is a bounded constraint function such that hk 
- gk ≤ 0 if and only if condition k is satisfied and  hk - gk > 0 if and only 
if the condition is not satisfied, and sk< 0 is the stiffness factor. The 
overestimation error for each constraint in the generalized sigmoid 
product method is bounded similarly to the two-sigmoid case such 
that: 
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where δk is the overestimation error for values that violate 
conditional constraint  k. Equation (43) also indicates system designers 
can select the appropriate value of sk based on desired precision. The 
minimum value of | |ks  necessary to guarantee that the overestimation 
error is less than the precision tolerance, ∆k, is given by the following 
relationships: 

max{ }
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g h
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Thus, equations (39) and (40) were used to determine the sigmoid 
product method parameters for the first example problem, while 
equations (43) and (44) were used to determine the sigmoid product 
method parameters for the second example problem. 

Description of Example Problems
The following section describes the example problems in this paper. 

The objective of the first example problem, as described earlier, is for 
the ownship to minimize deviations from a 3D flight path corridor 
while maintaining either a horizontal separation distance (∆xy) of at 
least 2460 ft or a vertical separation distance (∆z) of at least 820 ft from 
an intruder. The objective of the second example problem is identical 
to the first but requires the ownship to also adhere to FAA right of 
way (ROW) rules in addition to maintaining the intruder separation 

distances above. In this problem, the turn direction is conditioned 
on time and range from the intruder. The setup conditions for both 
example problems are identical. For both example problems, the 
collocation is performed at Legendre-Gauss-Radau quadrature points 
as described by Patterson in 2013. 

Constraints

 Equation (45) represents the dynamic constraints for the ownship 
that the optimization algorithm must satisfy when generating the 
optimal collision avoidance trajectory [musica:ddd]: 
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The states, x(t), in equation (45) consist of the cartesian directions 
(x,y,z), flight path angle (γ), and heading angle (χ). The controls, u(t), 
are bank angle (µ) for horizontal control and normal acceleration (Nz) 
for longitudinal or z-axis control where Nz is defined in the velocity-
axis frame [musica:ddd]. The remaining variables in equation (45) are 
ground speed (V) and gravitational acceleration (g). An assumption 
for this model is that the aircraft’s flight control system will keep the 
vehicle speed constant throughout the avoidance maneuver.

In this problem the intruder aircraft maintains a constant speed 
of 300 ft/sec, a constant heading of 180° and a constant altitude of 
6,000 feet. Although the optimal control problem formulation can 
easily accommodate multiple intruders and more complex and even 
stochastic models Smith [14] in this example problem we intentionally 
limited the problem to a single intruder and kept the intruder dynamic 
constraints simple in order to focus on the methodology for enforcing 
the conditional inequality path constraints. Thus, the intruder dynamic 
constraints appear as: 

( )
int

int int int

int

( ) 300cos(180 ) 300
= ( ), = ( ) = 300sin(180 ) = 0

( ) 0 0

  −   
    
    
        

f







 



x t
x x t t y t

z t
        (46)

The equality boundary constraints are time initial  (t0), time final 
(tf), ownship initial position (x0, y0, z0), and intruder initial position 

( )0 0 0int int int
, ,x y z . These boundary constraints appear as: 
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The inequality path constraint for the collision avoidance problem 
is the ownship must maintain at least 2460 feet separation distance 
horizontally or 820 feet vertically at all time from the intruder. To 
approximate this conditionally inequality constraint, the MAES, 
sigmoid sum, and sigmoid product methods are evaluated as described 
by equations (19), (26), and (32), respectively. In addition, the 
inequality control constraints, u(t), appear as: 

45 ( ) 45
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The symmetric control bounds on Nz(t) are reasonable maneuver 
limits for commercial transport or large remotely piloted aircraft. In 
addition, the upper bound on Nz(t)  corresponds to the upper bound 
on µ(t) such that when both controls are at their maximum value the 
aircraft performs a level turn. 

Performance measure

The performance measure for this problem is to minimize overall 
deviation distance (d) from the specified 3D flight path corridor 
centerline. In Figure 4 adapted from [wolfram: 3D_distance], x1 and x2 
identify two consecutive waypoints, x(t) the current ownship position, 
and (d) the deviation distance such that [wolfram: 3D_distance]: 
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J d t dt 	                                                                                         (49)
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In this problem, x1 and x2 are defined in feet as: 
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Note that the ownship is trying to fly along the line through x1 and 
x2, but there is no time specified with either point. 

Example Problem 1
In this section we first analyze the results of using the MAES to 

approximate the inequality path constraint and then examine the 
results of using the sigmoid methods for the first example problem. 
For comparison, in each case we used a global polynomial with 40 fixed 
collocation nodes and used IPOPT as the NLP solver. Simulations in 
this paper used Matlab version 2012 b on a laptop computer operating 
with OS X version 10.9 operating system and a 2.3 GHz Intel Core I 
5 processor with 16 GB 1333 MHz DDR3 memory. The performance 
measure for this scenario was to minimize path deviation, as in 
equation (49). Since the minimum horizontal separation distance was 
3× greater than the minimum vertical separation distance, intuitively 
the minimum deviation trajectory was for the ownship to intercept the 
3D flight path corridor and change altitude only when required to meet 
the conditional separation constraint. The simulation results confirmed 
this intuition. The primary differences in these two approaches was the 
accuracy of the approximation and the time required for the optimizer 
to achieve a solution. To standardize the results we provided the NLP 
solver with the same conservative initial guess for each simulation run 
which consisted of the ownship flying level at the initial condition 
heading of 0 degrees. The minimum path deviation trajectory for all 
three methods appeared similar. Although Figure 5 is a time-series 
quad chart of only the MAES simulation results, the minimum path 
deviation trajectories from the sigmoid methods appeared the same as 
the results in this figure. In this figure, the ownship is depicted in blue, 
the intruder in red, and the desired 3D flight path corridor in black. 
Both aircraft started the scenario at the same altitude of 6,000 feet MSL 
with the ownship 2,000 feet south (positive y-axis) of the 3D corridor 
while the intruder started and remained on the corridor.

As seen in panel (a) of Figure 5, at the start of the scenario the 
ownship began an immediate left turn to intercept the 3D flight path 
corridor and then continued on the corridor at the specified corridor 
altitude of 6,000 feet as shown in panel (b). In panel (c), the ownship 
then deviated from the corridor altitude by climbing only when 
required to meet the conditional separation inequality constraint. After 
satisfying this conditional constraint, the ownship then descended and 

maintained the desired 3D flight path corridor for the duration of the 
time horizon shown in panel (d). 

MAES simulation results
Table 1 summarizes the effects of increasing the exponential terms 

in equation (19) on the normalized cost (J), number of NLP inequality 
constraint evaluations, CPU time in NLP evaluations, and the vertical 
and horizontal separation distances from the intruder at the closest 
point of approach (CPA). 

The normalized cost (J) in Table 1 represents the ratio of the cost of 
intercepting the 3D corridor with an avoidance maneuver normalized 
by the cost of intercepting the 3D corridor without an avoidance 
maneuver. Note that these results are for 40 collocation nodes. While 
the number of nodes will affect the results, increasing the number of 
nodes will not necessarily cause the generated trajectory at the CPA to 
achieve the minimum feasible separation distances. In fact, due to the 
interaction between the aircraft dynamics and cost function, equations 
(45) and (49), the minimum vertical and horizontal separation 
distances at the CPA may overshoot the minimum feasible separation 
distances of the active constraint for any number of collocation nodes. 

Figure 6 graphically displays the results for N=200. The blue asterisks 
in the plots show the horizontal (∆xy) and vertical (∆z) separation 
distances between the ownship and the intruder aircraft respectively 
at each collocation node for the 60 second time-horizon. The red-
line in each plot depicts the minimum horizontal (2460 ft) or vertical 
(820 ft) separation distance. Figure 6 shows that at approximately 12 
seconds, the ownship began a climb so that as the horizontal separation 
decreased to below 2460 ft, at approximately 26 seconds, the ownship 
achieved the required vertical separation of at least 820 ft. In this plot, 
the ownship climbed above the minimum altitude of 820 ft and peaked 
at an altitude of approximately 870 ft. The results for both sigmoid 
methods appeared similar to the results in Figure 6.

Sigmoid simulation results
Sigmoid sum results: Table 2 summarizes the results of increasing 

the stiffness factors (sh and sv) in equation (26) on the cost (J), number 
of inequality constraint evaluations, CPU time in NLP evaluations, 
maximum vertical separation distance from the intruder, and the 
minimum horizontal separation distance from the intruder.

Sigmoid product results: Table 3 summarizes the results for the 
sigmoid product method of increasing the stiffness factors (sh and 
sv) in equation (32) on the cost (J), number of inequality constraint 
evaluations, CPU time in NLP evaluations, maximum vertical 
separation distance from the intruder, and the minimum horizontal 
separation distance from the intruder. 

Sensor tolerance evaluation results

The sigmoid sum method had the largest computational time 

Figure 4: 3-D Point line distance (Adapted from MathWorld A Wolfram Web 
Resource [18]).
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and was the most conservative of the three methods. Therefore, the 
following sensor tolerance evaluation focuses on the performance of 
the MAES and sigmoid product methods with parameters chosen to 
guarantee maximum overestimation errors less than a given sensor 
tolerance. For simplicity, this evaluation assumes the horizontal and 
vertical sensor tolerances are equal. From the previous example, for a 
sensor tolerance of  ± 12 feet, the minimum value of N for the MAES 
method to guarantee the maximum overestimation error is less than 
the sensor tolerance is N=144. Similarly, from equation (40) for the 
sigmoid product method the minimum values of | |hs  and | |vs  
required to guarantee the maximum overestimation error is less than 
the sensor tolerance are | |= 226hs  and | |= 76vs . Table 4 shows the 
results for the MAES and sigmoid product methods with parameter 
values that guarantee the maximum overestimation error is less than 
sensor tolerances of 12, 25  and 50 feet.

The previous results used only 40 collocation nodes and these 
nodes spanned the entire trajectory as a single “global” interpolating 

polynomial. However, to increase the fidelity of the solution especially 
near the constraint activation boundaries, the results in Table 4 divided 
the trajectory into 20 equal-spaced segments with 10 collocation 
nodes per segment as shown by Huntington in  2007. Although not 
reflected in the table, an alternate formulation applied an adaptive 
mesh refinement strategy by Patterson in 2013, which adaptively 
increased the number and placement of collocation nodes to achieve 
a user-defined level of accuracy. However, since the execution times 
for the adaptive node placement strategy varied significantly based on 
the number of mesh refinements, for standardization and comparison 
of results, a fixed number of collocation nodes was preferred for 
this analysis. Furthermore, due to the longer execution times of an 
adaptive node placement strategy, any eventual implementation of a 
real-time airborne collision avoidance algorithm would likely use fixed 
collocation nodes. 

To better gauge the changes in the ownship trajectory as a function 
of the change in the sensor tolerance, the results in Table 4 replaced 

Figure 5: Time series of optimal trajectory for own ship (Blue) avoiding the intruder aircraft (Red) while minimizing path deviation (MAES, Sigmoid results similar).

MAES Order (N)  Normalized Cost (J)   Inequality Constraint 
Evaluations  

CPU time in NLP Evaluations 
(sec)  

 Separation at CPA 
 Vertical (ft)  Horizontal (ft)

2  1.666  130  26.41  1129  795 
4  1.46  59  23.32  974  775 

100  1.344  64  22.8  875  772 
200  1.341  69  27.26  872  761 

Table 1: IPOPT simulation results for MAES approximation of conditional inequality constraint.

Stiffness factor (Sh, Sv) Normalized Cost (J) Inequality Constraint Evaluations   CPU time in NLP Evaluations (sec)  
 Separation at CPA 
 Vertical (ft)  Horizontal (ft)

(50, 50)  1.656 583  228.70  1122  790 
(100, 100)  1.458 1174  365.56  971  776 
(125, 125)  1.423 1189  400.82  941  777 

Table 2: IPOPT simulation results for sigmoid sum approximation of conditional inequality constraint.

Stiffness factor (Sh, Sv)  Normalized Cost (J) Inequality Constraint Evaluations  CPU time in NLP Evaluations (sec)  
 Separation at CPA 
 Vertical (ft)  Horizontal (ft)

(180, 60)  1.443  121  50.81  825  989 
(210, 70)  1.422  128  52.9  824  968 
(240, 80)  1.403  80  38.69  824  915 

Table 3: IPOPT simulation results for sigmoid product approximation of conditional inequality constraint.
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the column showing the number of inequality constraints evaluations 
in Tables 1-3 with a new column that showed the constraint activation 
times. As seen in Figure 6, the intersection of the red-dashed line and 
blue-asterisk indicate the constraint activation times. For the sensor 
tolerance evaluation, changes in the constraint activation times can 
provide additional insight into the sensitivity of the aircraft dynamics 
to the sensor tolerance. For instance, the performance measure (J) 
in this problem should force the optimal trajectory towards the 
“corner” of the constraint boundary where the horizontal and vertical 
constraints are active since in both MAES and sigmoid methods, these 
constraint corners are where the overestimation error is zero. This fact 
is particularly evident in Figure 1 where the formulation of the MAES 
optimization problem in equation (7) minimized the overestimation 
error at the corners of the rectangular constraint area.

In general the normalized cost (J) in Table 4 increased slightly as 
the predicted overestimation error increased. However, the constraint 
activation times remained consistent with the constant ground speed 
assumption, and the minimum separation distances at the CPA did 
not noticeably change as the sensor tolerance increased. These results 
indicate that the aircraft dynamics and trajectory optimization process 
were not sensitive to the range of sensor tolerances in the table. Since 
the overestimation error achieved its minimum value at the constraint 
corner, the optimizer forced the trajectory to intersect this corner as 
seen by the consistent constraint activation times. Even at a sensor 
tolerance of 50 feet, the ownship dynamic constraints were still what 
drove the optimal trajectory to start a climb away from the desired 
flight path in order to intersect the constraint corner; that is, the 
ownship climbed to reach an altitude of 820 feet above the intruder at 
the exact moment the horizontal separation distance decreased to less 
than 2460 feet. Likewise, after the two aircraft passed, the ownship then 
descended below 820 feet above the intruder at the exact moment when 
the horizontal separation distance again increased to greater than 2460. 
Thus, the trajectory was insensitive to sensor tolerances up to 50 feet. 
This was because the ownship’s dynamics forced the aircraft to climb 
to intersect the constraint corner rather than to avoid the worst-case 
overestimation region corresponding to sensor tolerances up to 50 feet. 
As a result, based on the intercept geometry of this example problem, 

the optimal trajectory should not change significantly until the sensor 
tolerance is significantly greater than the aircraft’s dynamic constraints 
required to intersect the constraint corner. For example, the earlier 
MAES results with N=2 correspond to sensor tolerances of greater than 
330 feet which was reflected in the fact that at the CPA the altitude 
separation was approximately 360 feet greater than the minimum 
required separation distance. Therefore, based on the intercept 
geometry the aircraft dynamics may be more important in determining 
the precision of the approximation rather than the sensor tolerance 
since the optimal trajectory may remain unchanged for varying values 
of realistic sensor tolerances and scaling may not be required.

Nonetheless, Table 4 confirmed the methods presented in the 
paper and provides users a means to implement conditional inequality 
path constraints with a gradient-based numerical solver to the desired 
level of precision. Additionally, the results confirm that if the problem 
involves only two simple constraints, then the MAES method is the 
superior approximation method. 

Example Problem 2
Unlike the previous example problem of satisfying a minimum 

horizontal or vertical separation distance where the MAES method 
performed well, an optimal control problem formulation may include 
multiple, compound (or nested) conditional constraints that do not 
lend themselves practically to the MAES formulation. An example of 
this type of complication is adhering to FAA right of way (ROW) rules, 
which state that if two aircraft are approaching nearly head on, then 
“each aircraft shall alter course to the right.” Since air traffic control 
procedures prefer horizontal over vertical maneuvers to maintain safe 
separation, in addition to implementing this conditional ROW constraint, 
this example problem also uses a new weighted cost function that separately 
penalizes ownship horizontal and vertical deviations from a desired 3D 
flight path corridor. This new cost function appears as, 
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Where dxy(t) is the horizontal deviation from the 3D corridor 

Sensor Tolerance
(ft) Method Normalized

Cost (J)
Constraint Activation

times (sec)
CPU time in
NLP (sec)

Separation at CPA
Vertical (ft) Horizontal (ft)

12

MAES
1.399

t1 = 25.69
254.88 919 116

N = 144 t2 = 32.73
Sigmoid
Product

1.394

t1 = 25.81

346.13 929 102
t2 = 32.86sh = −226

sv = −76

25

MAES
1.406

t1 = 25.81
236.54 918 110

N = 70 t2 = 32.86
Sigmoid
Product

1.396

t1 = 25.81

285.51 931 102
t2 = 32.85sh = −109

sv = −37

50

MAES
1.401

t1 = 25.80
147.1 936 107

N = 36 t2 = 32.85
Sigmoid
Product

1.399

t1 = 25.81

162.75 934 107
t2 = 32.86sh = −55

sv = −19

Table 4: Comparison of methods for achieving error less than sensor tolerance.
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centerline and dz(t) is the vertical deviation. The quadratic penalty 
in equation (52) is based on an assumed 3D corridor defined as ± 
3038  feet (half a nautical mile) horizontally and  ±300 feet vertically 
from centerline. Because this new cost function will likely cause the 
ownship to maneuver horizontally instead of vertically to maintain 
safe separation, the ownship will need to comply with the horizontal 
ROW constraint and alter course to the right since their approach will 
be nearly head on in this example problem. 

Right of way formulation

In formulating the conditional ROW constraint, the sigmoid 
product method is used to implement a set of conditional logic ‘if 
statements.’ The feasibility region for the conditional ROW constraint 
is described by the following set of compounded logic OR conditions: 
If the separation distance between the ownship and intruder is greater 
than or equal to 2× the horizontal keep out radius of 2460 feet OR the 
time to CPA (TCPA) is greater than or equal to 30 seconds OR time from 
CPA is less than or equal to -5 seconds OR the relative azimuth angle 
(θ) between the ownship and the intruder is greater than or equal to 
zero (so the ownship will pass to the right of the intruder) then the 
solution is feasible; otherwise, the trajectory is not feasible. This 
inequality constraint formulation appears algorithmically as follows: 

if ( )2 2 2  2 2460feet∆ + ∆ + ∆ ≥ ×x y z

feasible 

else if (TCPA ≤ -5 seconds)

feasible 

else if ( TCPA  ≥ 30 Seconds)

feasible 

else if (θ ≥ 0)

feasible 

else 

infeasible 

end 

Each of the four conditional constraints in the ROW formulation 
are approximated using unique sigmoid functions. The range separation 
indicator function approximation at each point appears as: 

1
2 2 2

(1 )
2 2460( , , , ) = 1

−
∆ +∆ +∆

− −
×

 
 ∆ ∆ ∆ +
 
 

x y z
sr

r rS x y z s e 	                   (53)

Thus, when ( )2 2 2 < 2 2460∆ + ∆ + ∆ ×x y z , the range indicator 
function approximation is active. By assuming a constant velocity 
and solving for the time that minimizes the instantaneous separation 
distance, the time to CPA (TCPA) appears as: 

[ ]
CPA 2 2 2

    
=

υ υ υ

υ υ υ

 ∆ ∆ ∆ ∆ ∆ ∆ −
 ∆ + ∆ + ∆ 

T

x y z

x y z

x y z
T 	                                (54)

where negative values indicate the two aircraft have passed or their 
velocity vectors are on non-convergent paths. Thus, the TCPA indicator 
function approximations appear as: 

1
cpa high( )
high low

CPAentry

1
cpa low( )
high low

CPAexit

( , ) = 1

( , ) = 1

−−

−

−−

−

 
 + 
  

 
 − + 
  

T T
st T T

t t

T T
st T T

t t

S T s e

S T s e

	                                 (55)

where Tlow=-5  seconds and Thigh=30 seconds, and when (TCPA> -5) 
OR (TCPA< 30) the TCPA  indicator function approximation is active. 
Finally, the turn direction constraint (Sθ) is formulated based on 
relative azimuth angle (θ) where, 

1= [ ]tanθ − ∆
∆

y
x

                                                                                    (56)

and is approximated at each instance in time using the following 
sigmoid function, 

1
(1 )

( , ) = 1
θ

θ π
θ θθ

−
− 

+ 
  


s

S s e 	                                                   (57)

where =θ θ π+ . Thus, when (θ>0) the “right turn” constraint 
approximated by equation (57) is satisfied. Therefore, based on 
equation (42) with  K=4, the approximation of the ROW conditional 
inequality path constraint appears as: 

CPAentry exit

CPA

[ ( , , , ) ( , )

( , ) ( , )] 0.0625 0θ θθ

∆ ∆ ∆

− − ≤

r r t t t

t

S x y z s S T s S

T s S s
	                                                                    (58)

where CPA CPAentry exit
( , , , ), ( , ), ( , )∆ ∆ ∆r r t t t tS x y z s S T s S T s  and ( , )θ θθS s  

are defined in equations (53), (55), and (57), respectively. 

Simulation results

As described earlier, the setup for this second example problem is 
identical to the first problem; however, the cost function in equation 
(49) is now replaced by the weighted cost function in equation (52). 
In addition, the ownship must now not only satisfy the conditional 
inequality path constraint in equation (19) formulated using the MAES 
method (N=200), but also satisfy the conditional inequality ROW 
constraint in equation (58) formulated using the sigmoid product 
method (st=sr=sθ=200). Like the sensor tolerance evaluation in the first 
example problem, this example divided the trajectory into 20 equal-
spaced segments with 10 collocation nodes per segment. Figure 7 
shows the simulation results. As in the first example problem, at the 
start of the scenario the ownship immediately maneuvered north 
(positive y axis) to minimize the path deviation from the 3D flight 
path corridor. However, due to the weighted cost function the ownship 
now maneuvered horizontally instead of vertically to keep out of the 
minimum separation distance from the intruder and correctly altered 
course to the right to comply with the conditional horizontal ROW 
constraint.

This example problem demonstrated that the sigmoid product 
method can effectively resolve multiple conditional constraints, to 
include constraints that are not naturally bounded (such as conditions 
that involve time or variables that are unrestricted in sign), and offers 
a robust alternative for problems where the MAES method is not 
suitable. Further, even with four conditional constraints as in this 
example problem, the error bounds for the sigmoid product method 
are valid. For example, based on equation (43) with st=sr=200, the 
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maximum overestimation error for the time and range conditional 
constraints was only 2.7%. Nevertheless, the use of this approach 
requires an understanding of the potential limitations. For instance, 
a well-known and often-stated critique of gradient-based NLP search 
methods is they produce local optimal solutions, which may or may 
not be global solutions. The formulation and testing of the ROW 
formulation highlighted the potential applicability of this critique 
in the context of airborne collision avoidance. For instance, given 
identical initial conditions, to enforce a “left turn” constraint required 
an initial trajectory guess to the left in order for the optimizer to locate 
the global vice the local optimal solution. A follow-on research effort 
explores potential methods such as those listed by Raghunathan in 
2004, for appropriately choosing “smart” initial guesses for complex 
compounded conditional constraints. Another important consideration 
is the number of collocation nodes and stiffness of the sigmoid function. 
For instance, if the nodes are too sparse then the sigmoid appears as a 
binary switching function causing the NLP to fail since the conditional 
constraint approximation is no longer differentiable. For example, 
Figure 8 shows the NLP approximation of the conditional constraint 
(TCPA ≤ -5  seconds) for 200 fixed collocation nodes; panel (a) shows the 
results for (-st=200) where the NLP successfully converged and panel (b) 
shows the results for (-st=300) where the NLP failed to coverage. Thus, 
the number and location of collocation nodes along with the sigmoid 

stiffness plays an important role in determining differentiability of the 
conditional constraint. Besides increasing collocation nodes and/or 
decreasing the sigmoid stiffness factor, an additional remedy to this 
situation is to use an adaptive mesh refinement strategy described 
by Patterson in 2013, which adaptively increases the number and 
placement of collocation nodes to help maintain differentiability of 
the conditional constraints approximated by the sigmoid functions. A 
final consideration when using this method is the potential for long 
convergence times. With 200 collocation nodes the NLP took 184.5 
seconds to converge to a solution; however, in this paper the simulation 
algorithms were not necessarily optimized for speed but were coded for 
robust post-processing analysis. For real-time implementation these 
convergence times will need to be improved using techniques such as 
parallel processing or a more efficient programing language.

Conclusion
This paper motivated the application of conditional inequality 

path constraints in the nonlinear airborne collision avoidance optimal 
control problem. This paper then developed and demonstrated two 
different methods to enforce conditional inequality path constraints 
using numerical gradient-based solvers by approximating the mixed-
norm and indicator function classes of constraint formulations. In 
addition, this paper analytically derived the maximum overestimation 

Figure 6: Simulation results using 200th order MAE’s approximation for inequality path constraint.

Figure 7: Time series of optimal trajectory for ownership (Blue) avoiding the intruder aircraft (Red) by adhering to right of way while minimizing path deviation.
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error bounds associated with these different approximation methods 
and also provided designers a means to determine the minimum 
computational complexity needed to achieve desired results based on 
sensor performance. Using realistic collision avoidance scenarios, this 
paper demonstrated the performance of these methods and confirmed 
the validity of the error bounds. Furthermore, both the minimum 
area enclosing superellipse (MAES) and sigmoid product methods 
yielded good results; however, due to the geometric intuition and faster 
computation times the MAES method may be more advantageous for 
normalized and non-complex constraints. However, the MAES method 
is not well-suited if the conditional constraints are not continuous or 
if the constraints are compounded. In these cases, the sigmoid product 
method provides a robust means to satisfy conditional constraints and 
has good error bounds. 
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Figure 8: Differentiability of sigmoid indicator function approximation.
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