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Introduction
The Department of Defense (DoD) has continued to recognize 

Small Unmanned Aircraft Systems (SUAS) as critical assets and the 
demand on their capabilities continues to grow.  They are ideally suited 
for the dangerous or repetitive missions that otherwise require human 
involvement [1].   Incorporating SUAS into the battlefield will streamline 
systems, sensors, and analytical tasks while significantly reducing 
the risk to human life [2].  Across the DoD and civilian industry, 
the demand for unmanned capabilities has become paramount.  
Specifically, Manned Unmanned Teaming (MUM-T) is one role SUAS 
perform that augment and enhance human capabilities with a desired 
goal to ensure operations in complex and contested environments 
[3].  Manned aircraft flying through terrain and over urban canyons 
can experience ground threats that significantly reduce their ability to 
accomplish the mission.  By teaming with SUAS, the manned aircraft 
can maintain a safe distance from the threat environment while 
relying on SUAS to augment the mission through system sensors.  
This scenario becomes ideal if the SUAS can autonomously navigate 
through a constrained environment from one area of interest to the 
next without the requirement for human interface.

Optimal control techniques are evaluated herein to determine 
feasible flight paths for autonomous SUAS through a highly 
constrained environment.  Three common challenges are addressed 
herein that become problematic when using optimal control software.  
First, convergence to a solution is not always guaranteed.  Second, 
the computation time required to achieve a solution can vary greatly.  
Third, constraint modeling and implementation can significantly affect 
the computation speed and convergence of the problem.  Each of 
these issues can be attributed to the problem formulation, constraint 
implementation, and the initial guess provided to the NLP solver.  
Further, system parameters must be bounded appropriately to ensure 
the space is adequately searched, increasing the number of parameters 
the user is required to input.  

To overcome these issues, insight will be taken from developments 
in the field of computer animation where Constrained Delaunay 
Triangulation (CDT) techniques are used to eliminate constraints 
from the search field and input parameters are generalized through 

a transformation to barycentric coordinates in a multi-phased 
approach.  Computer animation path planning algorithms have 
become computationally efficient and perform effectively in moving 
autonomous agents through simulated environments.  However, 
these algorithms are often restricted to the two-dimensional plane 
with limited control on the agent.  Combining these path trajectories 
with the increased capabilities of optimal control software allows for 
efficient, feasible, multi-control solution for autonomous SUAS flight.

Background
Numerical solutions to optimal control problems are often solved 

with indirect or direct methods.  Indirect methods use the calculus of 
variation to form the Hamiltonian, resulting in a two-point boundary 
value problem.  The optimal solution is determined by solving the 
first-order optimality conditions while minimizing the Hamiltonian 
with respect to the control.  With this method, a good approximation 
is required for the states, co-states, control and time.  However, 
the optimality conditions can often be difficult to formulate and 
determining a realistic estimate of the co-states is not intuitive. 

Alternatively, direct methods transcribe the infinite-dimensional 
optimal control problem into a finite-dimensional optimal control 
problem with algebraic constraints, also known as a Nonlinear 
Programming (NLP) problem [4].  Solutions are acquired using 
orthogonal collocation methods, polynomial approximation of the 
state, and numerical integration through Gaussian quadrature.  The 
state, X, is approximated at a set of collocation points described as
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Abstract
This paper identifies feasible fight paths for Small Unmanned Aircraft Systems in a highly constrained environment.  

Optimal control software has long been used for vehicle path planning and has proven most successful when an 
adequate initial guess is presented flight to an optimal control solver. Leveragingfast geometric planning techniques, 
a large search space is discretized into a set of simplexes where a Dubins path solution is generated and contained 
in a polygonal search corridor free of path constraints.  Direct optimal control methods are then used to determine 
the optimal flight path through the newly defined search corridor.  Two scenarios are evaluated. The first is limited to 
heading rate control only, requiring the air vehicle to maintain constant speed.  The second allows for velocity control 
which permits slower speeds, reducing the vehicles minimum turn radius and increasing the search domain.  Results 
illustrate the benefits gained when including speed control to path planning algorithms by comparing trajectory and 
convergence times, resulting in a reliable, hybrid solution method to the SUAS constrained optimal control problem.  
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First, let G consist of a planar straight-line graph with S defining a 
set of n segments that form all the constrained edges in the domain.  A 
CDT, T, is then formed such that all segments of S are also segments 
of T and the constrained Delaunay criterion defined below are upheld. 

For each unconstrained edge e of T, there exists a circle C such that

1.	 The endpoints of edge e are on the boundary of C

2.	 If any vertex v of G is in the interior of C then it cannot be “seen” 
from at least one of the endpoints of e [12].

Figure 1 illustrates the CDT for a single polygonal constraint.

With this technique, constraints can effectively be forced in the 
discretization of the space.  In computer animation, these constraints 
represent walls, furniture, and other common obstacles an autonomous 
agent must avoid when traversing through a space.  To account for the 
width of the autonomous agent, a test is performed to assure a disk 
of radius r can traverse through any given region without crossing a 
constrained edge.  This allows for an efficient computation of paths of 
arbitrary clearance.  To assure the accuracy of the feasible paths, a local 
clearance test is performed to verify a path solution with minimum 
radius of 2r.  In the event a path corridor is restricted, a refinement of 
the mesh is attempted by redistributing the triangulation or adding a 
vertex point to a straight line segment of the set S.  The final triangulated 
mesh is then termed a “Local Clearance Triangulation (LCT)”.

A path through the LCT is defined as a “free” path if it traverses 
from an initial point p to a final point q without crossing a constrained 
edge.  A free path will cross several unconstrained edges resulting in 
a “channel” of connected simplexes formed of all traversed triangles.  
A path solution through this channel is determined with a “funnel” 
algorithm developed by Lee and Preparata, and Chazelle [13,14] as cited 
by Hershberger [15].  The funnel algorithm has been demonstrated 
under multiple applications, including path finding for autonomous 
agents [16], querying visible points in large data sets to define shortest 
paths [17], shortest paths for tethered robots [18], and robots in extreme 
terrain [19].

Given a corridor defined by a series of triangles, the funnel algorithm 
determines the shortest path from an initial point p to a final point q, 
subject to a defined clearance from each simplex edge.  The apex of the 
first triangle is defined as a, with the remaining two vertex points on 
the shared triangle edge defined as u and v.  The remaining vertex of 
the second triangle is defined as w.  If the straight line path from a to w 
is feasible, that path is stored as shown in Figure 2A.  Maintaining a as 
the apex, the straight line path from a to the following triangle vertex 
point, w’ is evaluated for feasibility and stored if accepted, as shown 
in Figure 2B.  This process continues until a straight line solution fails 
upon which the vertex providing the shortest distance to the next point 
in the path is chosen as the new apex, a’ and the algorithm continues 
as shown in Figure 2C.  A detailed description of the funnel algorithm 
can be found in Hershberger’s work [15]. Finally, in order to account 
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This method is termed global as each collocation point is solved 
simultaneously rather than other fixed interval methods such as a 3 or 5 
point formula method [5].  

One disadvantage of the direct method results from the discretization 
of the optimal control problem producing several minima, leading to a 
solution that may be far from the optimal.  To minimize this affect, an 
accurate prediction of the solution, control, and time are required to 
assure feasible results as there is no guarantee of convergence to a global 
minimum with direct methods.  Many algorithms have been proposed 
previously to acquire an initial guess to the solution, including Dubins 
path algorithms [6] and heuristics [7,8] with computation time and 
accuracy being the limiting factor for complete hybrid solutions.  The 
research herein examines the effectiveness of using computationally 
efficient path planning algorithms from the field of computer animation 
to seed the NLP used in the optimal control software for SUAS path 
trajectories in constrained environments.   

Methodology
To properly formulate the SUAS path planning optimal control 

problem, all state and control variables must be defined and properly 
bounded and an initial guess to the path solution, control, and time must 
be formulated.  Often, determining realistic bounds on the states, control, 
and time can be challenging.  Bounds that are set too loose can result in 
high computation times while setting bounds too tightly can limit the 
solution search space.  Further, solution accuracy and computation 
times are greatly dependent on the quality of the initial guess used to 
seed the NLP.  To minimize the impacts of these issues, the optimal 
control problem is formulated in a phased approach.  The search space 
is discretized into a CDT and translated into barycentric coordinates, 
providing standardized bounds on the system states.  Path planning 
algorithms designed for computer animation are used to achieve feasible 
path solutions and are formulated to provide a quality initial guess for 
the states, control, and time in the optimal control problem.

Triplanner  Toolkit
An extensive review of path planning through environments with 

clearances and algorithms developed to determine shortest paths while 
providing a minimum clearance to all constraints are provided by 
Kallmann [9,10]. These algorithms focus on computational efficiency 
while also providing a framework for dynamic addition and removal 
of constraints. They have been implemented in the 2010 version of 
the Triplanner toolkit1. An overview of the relevant algorithms from 
the Triplanner  toolkit is given below; a more extensive review of the 
algorithm can be found by Kallmann, M [9,11].

1http://graphics.ucmerced.edu/software/Triplanner /

Figure 1: CDT of polygonal constraint.
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for local clearances around obstacles, a circular constraint of radius r is 
imposed on each vertex point as illustrated in Figure 2D [11].

The Triplanner  toolkit utilizes an A* search algorithm to provide 
a locally optimal search, defining a Dubins path solution contained 
in a series of triangles.  It is capable of achieving path solutions on 
the order of milliseconds for environments with 60K+ segments [9].  
This path solution can be translated to the SUAS problem by setting 
the radial clearance distance of each vertex equal to the turning radius 
of the SUAS, therefore providing a feasible path to seed the NLP.  
Although there is no guarantee that the defined search corridor will 
contain a global solution, it will guarantee a feasible flight path that is 
free of constraints when exogenous inputs are excluded.  Currently, 
the Triplanner  algorithm results only produce a path solution without 
influence of control parameters or rate limits.  Although the algorithm is 
computationally efficient, additional work is required to produce SUAS 
flight trajectories while fully exploiting vehicle control parameters 
throughout the problem domain. 

Coordinate Transformation
With a feasible path solution acquired to seed the NLP, the parameter 

bounds on the states, control, and time of the optimal control problem 
can be simplified with a translation from the Cartesian coordinate 
frame to the barycentric coordinate frame.  Often, when dealing with 
simplex shapes, the barycentric coordinate frame is preferred in which 
the location of a point within a simplex shape is defined as a weighted 
measure to each of the vertices, also referred to as areal coordinates 
when restricted to the two-dimensional simplex [20].

Defining the coordinate system in 2 , let r1, r2, and r3 be vertices 
of a simplex G.  Any point, R, inside simplex G can be represented in 
terms of the vertices of G and the barycentric weights, used as a basis as 
follows [21-23]: 

1

α
=

= ∑ j j
j

r
n

R 	                                                                                               (4)

where α represents a set of real coefficients, defining the barycentric 
weights whose sum equals unity and r defines the vertex points in 
Cartesian coordinates.  Requiring the weights to be positive semi-
definite ensures the point is maintained inside simplex Q, 

[ ]0 1,2,3α ≥ ∀ ∈j   j .	                                                                                (5)

The simplex parameters illustrating Cartesian coordinates in R and 
barycentric coordinates in A is shown in Figure 3.

For the two-dimensional triangular relationship, transformation 
from a barycentric coordinate frame to a Cartesian coordinate form can 
be accomplished through the linear transformation

=R QA 					                   (6)

where 2∈R   defines the point location inside the simplex in Cartesian 
coordinates, 2∈ xnQ defines the vertex matrix of simplex G comprised 
of vertex points [ ]1,2,3∀ ∈jq   j , and ∈nA  defines the barycentric weight 
matrix.  Expanding Equation 3 and solving for the first two barycentric 
coordinates yields 
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3
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α
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where T is a 2x2 matrix comprised of the vertex points of simplex Q,
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T 	                                                                            (8)

and third barycentric weight, α3, is expressed in terms of the first two 
calculated weights to sum to unity.

Expanding Equation 4 yields the barycentric weights in terms of 
both the interior point location and the vertex points of the simplex.

( )( ) ( )( )
( )

2 3 3 3 2 3
1α

− − + − −
=

y y x x x x y y
det T

	                                     (9)

( )( ) ( )( )
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3 1 3 1 3 3
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− − + − −
=

y y x x x x y y
det T

	                                    (10)

3 1 21α α α= − − 	                                                                     (11)

Differentiating the weights with respect to the x and y position 
allows for the propagation of dynamic state equations through an 
individual simplex.   

( ) ( )
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3 1 2α α α= − −   	                                                                                           (14)

Evaluating the determinant of matrix T, singularities will become 
problematic only if the vertex points of the simplex become collinear.  
By defining the discretization of the search space to hold the properties 
of a CDT, singularities in the dynamics will be avoided.

Optimal Control Problem Setup
The optimal control problem is formulated in the General Purpose 

Optimal Control Software (GPOPS-II) and implemented in MATLAB.  
GPOPS-II is a computation tool for solving multiple-phase optimal 
control problems using variable-order Gaussian quadrature collocation 
methods with an adaptive mesh refinement [24].  The user is required 
to input parameter bounds on the initial, intermediate, and final states, 
as well as the time vector, control, and any additional path constraints 
presented in the scenario.  

By discretizing the problem’s search space with a CDT, the path 
through each individual simplex can be represented in GPOPS-II as 
a single phase, each with a specified set of dynamics, constraints, and 

Figure 2: Triplanner  path development.

 
Figure 3: Barycentric coordinate frame.
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bounds.  The solution acquired from the Triplanner  toolkit provides 
both the initial guess of the path solution as well as the simplex structure 
to effectively formulate the optimal control problem in GPOPS-II.  

The output of the Triplanner  algorithm yields three text files 
containing the path solution, the CDT, and the defined search corridor.  
The discretized path solution contains the endpoints of each straight 
line path and equally spaced points of constant radius on each turn.  
To properly formulate the initial guess, the solution, CDT, and the 
search corridor are translated to barycentric coordinates and the path is 
interpolated and subdivided into each simplex equating to the optimal 
control phases.  As the path trajectory traverses across a simplex edge, 
the vertex points from the current phase to the next must transition 
such that the barycentric weights appropriately reflect the active vertex 
points.  This process is illustrated in Figure 4.  

Here it can be seen that as the path solution approaches a simplex 
edge, the state corresponding to the opposite vertex has no contribution 
to the location of the point and therefore accepts a zero value.  Care 
must be taken to assure the state vector accurately represents the 
corresponding weight values as the path transitions across the simplex 
boundaries.

The aircraft dynamics for this problem are derived in the two-
dimensional plane, representing constant altitude flight.  They are 
formulated with a five state model describing the SUAS position in the 

( ) ( ),x t y t  directions, the heading angle, ( )θ t , the heading rate,   ( )θ t , 
and the velocity v(t). The control, u(t), is implemented on the derivative 
of both the heading rate,   ( )θ t , and the velocity,   ( )v t .

( ) ( ) ( ) ( ) ( )( ) [ ]1θ= ∀ ∈ … p px t v cos t  p P 	                                   (15)

( ) ( ) ( ) ( ) ( )( ) [ ]1θ= ∀ ∈ … p py t v sin t  p P 	                                    (16)

( ) ( ) ( ) [ ]1= ∀ ∈ … pθ t θ t   p P 	                                                       (17)

( ) ( ) ( ) [ ]1 1θ = ∀ ∈ … p t u  t   p P 	                                                        (18)

( ) ( ) ( ) [ ]2 1= ∀ ∈ … pv t u t   p P 	                                                         (19)

Here, v represents the velocity, p represents the current phase, and 
P defines the total number of phases in the solution, consistent with the 
number of simplexes in the defined search corridor.

In order to fully transform the SUAS state vector into the barycentric 
coordinate system, Equations 15-16 are substituted into Equations 12-
13 to form the final set of dynamic equations, [ ]1∀ ∈ … p P .
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( ) ( ) ( ) ( ) ( ) ( )3 1 2α α α= − −  p p pt t t 			                (22)

( ) ( ) ( )θ θ=  p t t 	                                                                                             (23)

 ( ) ( ) ( )= p t ψ tθ 	                                                                                          (24)

( ) ( ) ( )= pv t a t 	                                                                                            (25)

The control is implemented on the derivative of the velocity and 
heading rate,

 ( ) ( ) ( ) ( )=   
pu t ψ t  a t  				                       (26)

The state vector is defined with six states, represented as

 1 2 3, , , , , =  
X α  α  α  θ  θ v 	                                                                      (27)

Subject to these dynamic constraints, the objective for each scenario 
herein is to minimize the cost functional

( )

( )

( )

= ∫
p

f

p
i

t
p

t

J dt 	                                                                                             (28)

( )= ∑ pJ J 	                                                                                             (29)

given the initial and final boundary constraints describe as 

 ( ) ( )( ) ( ) ( ) ( )[ ]11
1 2 30 0 0 0, ,=t α  α  αX 	                                                       (30)

 ( ) ( )( ) ( ) ( ) ( )[ ]1 2 3, ,=P
f f f ft α  α  αPX 	                                  (31)

where the heading, heading rate, and velocity are free variables in the 
initial and final state.  Further, inequality constraints are implemented 
to maintain the search space within each simplex and provide bounds 
to the state, control and time defined as

( )
10 1α≤ ≤p 	                                                                                             (32)
( )
30 1α≤ ≤p 	                                                                                               (33)
( )
30 1α≤ ≤p 	                                                                                               (34)

( )θ π≤p 	                                                                                             (35)

( ) 25 /θ ≤ p  deg s 	                                                                      (36)

( ) 2
1 1 /≤pu  deg s 	                                                                        (37)

( ) 2
2 2 /≤pu  ft s 	                                                                                                (38)

( )
( )

0 ≤ ≤
p

p maxlt
v

	                                                                                             (39)

where maxl  describes the longest edge of the current simplex.  The 
bound on the fourth and fifth state were chosen to represent a general 
group 1 SUAS [1].  The bound on the heading rate control was chosen 
such that the   θ  vector represented an appropriate set of dynamics to 
implement in an aircraft control system.

Finally, event constraints are implemented to assure a continuously 
smooth transition of the state variables as the path traverses through 
each phase, described asFigure 4: Simplex phased solution.
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( ) ( ) [ ]1
0 0 2 .−− = ∀ ∈ …p p

fX  X   p P 	                                                          (40)

Scenarios
Two scenarios were evaluated to illustrate the savings in the 

objective cost when solving for constrained path trajectories with the 
optimal control software, GPOPS-II.  In each scenario presented, all 
polygon constraints are convex, however the approach can be applied 
to arbitrary polygons.  The first scenario considered an aircraft flying 
at max speed with control limited to only the change in heading rate.  
This reduces the previously defined state matrix in Equation 27 to a five 
state model defined as

1 2 3 =  
X     λ λ λ θ θ 	                                                                               (41)

while the control, previously defined in Equation 26, is reduced to
( ) ( ) ( )=   

pu t t  ψ .	                                                                             (42)

The Triplanner  solution was determined with a maximum radial 
off-set distance defined by the vehicles bank angle limit when flying at 
max speed.  The path results, along with the CDT discretization, were 
used as inputs to seed the NLP of the optimal control software.

The second scenario is constructed to illustrate the advantages 
of path planning when allowing for speed control on an air vehicle.  
Again, the Triplanner  algorithm is used to determine an initial path 
solution and CDT discretization.  In contrast to the first scenario, the 
radial off-set distance is now defined using the minimum allowable air 
speed of the SUAS.  This reduces the minimum turn radius and may 
increase the feasible search space of the problem.  The optimal control 
problem consists of the six state, two control model defined previously.

For both scenarios, the SUAS is required to fly through a pre-
defined area of downtown Chicago, USA, measuring 5600 x 2800 ft.  
The altitude of the SUAS is restricted to 600 ft AGL and therefore all 
structures exceeding a height of 550 ft are modeled as path constraints 
that must be avoided.  The initial and final locations of the path are 
defined as

( ) ( ), 200,200=i ix y  	                                                                              (43)

( ) ( ), 2630,2650=f fx y  .	                                                                         (44)

The final location of the scenario was chosen such that the most 
direct path would require the SUAS to navigate through narrow 
building corridors requiring minimum radius turns thus illustrating 
the search domain of the problem.  

The initial guess of the path trajectory supplied to the NLP solver 
is acquired through the Triplanner  algorithm as described previously.  
The initial guess of the heading vector is determined by the angle 
between consecutive Cartesian coordinates of the Triplanner  solution.  
The heading rate and control are calculated with a right point finite 
differencing method initiated with the heading angle vector.  Each of 
these vectors are rate limited to remain consistent with those used in the 
optimal control problem as in Equations 36 and 37.  The initial guess 
for the velocity vector is formulated with maximum speed on straight 
sections of the path and minimum speed on the minimum radius turns 
while the acceleration vector is initiated with the zero vector.  The time 
vector is approximated through each phase as the running summation 
of the Euclidean distance between consecutive points divided by the 
vehicle airspeed.

The constraint map is shown in Figure 5 with each building 
exceeding 550 ft described with a red enclosed polygon.  Building 

heights were estimated in order to construct a formidable optimal 
control problem.  The initial and final path locations are shown with 
green and red asterisks respectively.

The GPOPS-II user settings defined for each scenario are described 
as shown in Table 1.

Minimum Time Scenario with Max Speed
The optimal control problem for the first scenario is as described 

previously with the objective being to fly from the initial point to 
the final point in the shortest amount of time. Often, with minimum 
time SUAS problems, the path solution is flown at maximum speed, 
therefore this problem only allows a single control defined as the 
change of heading rate of the vehicle.   

Scenario #1: Triplanner  solution

The Triplanner  algorithm is solved and implemented as the initial 
guess to the NLP.  It is initiated with the polygonal constraints, the 
initial and final location of the path solution, and a defined off-set 
distance from each constraint.  To assure a feasible flight path solution, 
the radial off-set distance is determined through the relationship 
between the vehicles velocity and turn rate as follows,

=R v
ω

	                                                                                            (45)

for R is the minimum turn radius, v is the velocity, and ω is the turn 
rate.  For this scenario, the max velocity was set to 30 ft/s with a turn 
rate of 25 deg/s yielding a turn radius of 68 ft.  The resulting search 
corridor and path solution are shown in Figure 6.

The Triplanner  solution is solved in 4.07 milliseconds on a PC 
resulting with an objective time of 134 seconds.  Here the constraint 

 
Figure 5: Chicago constraint map.  Map Data @2017 Google.

GPOPS-II User Settings
Mesh Method hp-Patterson Rao

Mesh Tolerance 10-2

NLP Solver SNOPT
Method RPM-differential

Derivative Supplier AdiGator
Derivative Level First
NLP Tolerance 10-3

Min Collocation Points 4
Max Collocation Points 10

Mesh Fraction 0.5* ones (1, 2)
Mesh Collocation Points 4* ones (1, 2)

Table 1: GPOPS user defined settings.
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off-set distance is shown on each polygonal vertex with blue circles.  
Due to the narrow corridors defined between buildings, and the 
maximum required off-set distance, the only feasible path solution 
requires the SUAS to fly around the constraints as shown in the black 
outlined simplex search corridor.  The path solution is shown as a 
Dubins path made of up straight line sections and max radius turns.  
However, this path is not optimal due to the placement of the circular 
off-set constraints placed on the vertex of each polygonal constraint.  
This allows for improvement to be seen in the objective function when 
solved with an NLP.  

Scenario #1: GPOPS-II solution

The path result for the optimal solution through the defined search 
corridor is shown in Figure 7. 

The optimal solution is solved in 2.12 seconds with an objective 
of 129.9 seconds.  The Triplanner  solution used to seed the NLP 
solver, SNOPT, is shown with the red dashed line while the discretized 
optimal solution is shown with the blue asterisks. A small improvement 
in the objective is seen over the Triplanner  results but at the cost of 
computation time.  

Figure 8 describes the heading, heading rate, and control respectively.  
The initial guess formulated from the Triplanner  results can be seen with 
the red lines while the optimal solution is shown in blue. 

Here, the difference in the two solutions is shown as the Dubins 
Triplanner  solution requires max radius turns at each vertex along the 
path while the optimal control solution can blend the solution through 
the constrained field.  

Although there are benefits to the optimal control solution, 
justification for using the optimal control software cannot be made at 
this point given the computation time required to achieve a solution 
with only minimal improvement to the objective. 

Minimum Time Scenario with Speed Control
The optimal control problem for the second scenario consists of the 

six state, two control model as described previously in Equations 20-39.

Scenario #2: Triplanner  solution

The Triplanner  solution is again initiated with the polygonal 
constraints, the initial and final location of the path solution, and a 
defined off-set distance from each constraint.  With the velocity now 
being a state, the SUAS has the ability to reduce speed in order to 
achieve a smaller turn radius and therefore navigate through narrow 
city corridors.  However, within the constraints of the 2010 Triplanner  
toolkit, the turn radius cannot be varied during a simulation.  This 
limits the Triplanner  algorithm to solve for a solution using the 
minimum speed turn radius calculated from Equation 40, yielding 
a minimum turn radius of 22.9 ft at the SUAS speed of 10 ft/s.  The 
Triplanner  results are shown below in Figure 9.

Similar to the first scenario, the Triplanner  solution resulted in 
just 6.1 milliseconds, but at an objective time of 364 seconds which is 
significantly increased due to the minimum speed restriction.  Again 
the constraint off-set distance is shown with blue circles around each 

 
Figure 6: Max radius Triplanner  solution.  Map Data @2017 Google.“

 
Figure 7: Sim #1 GPOPS-II Solution.  Map Data @2017 Google.

 
Figure 8: Sim #1 GPOPS-II states and control.

 
Figure 9: Min radius Triplanner  solution.  Map Data @2017 Google.
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vertex of the search corridor and the path solution is shown with the 
solid red line.  Under minimum speed, the search corridor provides a 
feasible search space that is a more direct route to the finish location.  
Although the distance traveled is significantly decreased, the objective 
time for the Triplanner solution is too long to consider this a viable 
solution in itself.

Scenario #2: GPOPS-II solution
The Triplanner  solution will again be used as the initial guess to 

seed the NLP solver SNOPT. Due to the increased objective time of 
the minimum turn radius Triplanner  solution, the input vectors are 
scaled in time to represent a maximum speed solution during straight 
sections of the path and a minimum speed solution during the constant 
radius turns.

Implementing the optimal control problem as described previously, 

 
Figure 10: Sim #2 GPOPS-II solution.  Map Data @2017 Google.

 
Figure 11: Sim #2 GPOPS-II states and control.

but now incorporating control on the SUAS acceleration, the optimal 
solution through the defined search corridor is shown in Figure 10. 

The optimal solution is solved in 2.86 seconds with an objective of 
120.4 seconds.  Here the Triplanner  solution, post processed for speed 
control, is shown with the red dashed line while the optimal solution 
is shown with the blue asterisk.  The computation times are similar 
to those found in the first GPOPS-II simulation, however, by allowing 
control on the SUAS speed, objective times can be significantly reduced, 
allowing the vehicle to traverse a more direct path to the target location.  

Figure 11 describes the heading, heading rate, heading rate control, 
velocity, and acceleration control respectively.  The initial guess 
formulated from the Triplanner  results can be seen with the red lines 
while the optimal solution is shown in blue. 

Similar to the first solution, the Dubins path solution resulting 
from Triplanner  can be seen in the top subfigure but here it is acquired 
with minimum radius turns.  By formulating the problem with 
optimal control software, the turn points in the path can be optimized 
through the constraints.  Further, the 4th subfigure shows the velocity 
is maintained at max speed for the optimal solution, thus providing a 
feasible path solution that is direct to the target location and flown at 
maximum speed. Table 1 summarizes the simulation results.

Conclusions
This work demonstrated a solution technique to solve feasible 

path solutions for SUAS through a highly constrained environment.  
Leveraging computationally efficient algorithms developed for 
computer animation, a CDT was performed on the search space and 
a Dubins path solution was determined through a simplex search 
corridor, free of all path constraints.  The defined search corridor, 
dependent on the user supplied radius off-set distance set in the 
Triplanner  algorithm, defines the domain of the optimal control 
solutions space.  By initiating Triplanner  with a SUAS maximum 
speed turn radius, path results are restricted to wide simplex corridors, 
excluding many routes on the interior of the domain.  Although these 
solutions are flown at maximum speed, the path is often highly sub-
optimal.  On the contrary, by initiating the Triplanner  algorithm 
with the SUAS minimum speed, the defined off-set radius is reduced 
and path corridors through the interior of the city are included in the 
solution space.  These solutions provide more direct routes to the final 
location, however, the flight time required to accomplish the path is 
excessive at minimum speeds.  

Optimal control software is utilized to blend the two Triplanner  
results by allowing for control on the SUAS acceleration, enabling 
the aircraft to optimize the speed profile while determining a path 
solution through a more direct route on the interior of the city.  Using 
the minimum SUAS turn radius to initiate the Triplanner  algorithm, 
a Dubins path solution is acquired and used as the initial guess for the 
NLP.  This result alone is sub-optimal as the Triplanner  algorithm 
places the minimum turn radius path constraints on each vertex of 
the search corridor, defining the Dubins path.  The optimal control 
software is able to improve on the Triplanner  solution by flying a more 
direct path while maintaining maximum flight speed, improving the 
objective function by over 8% on the most direct route. 

Speed control in previous path planning algorithms for minimum 
time objectives, are often not included due to the complexities inherent 
to the design.  This effort has demonstrated the benefit speed control can 
have in determining efficient flight trajectories in highly constrained 
domains. Ultimately, by including acceleration control on the SUAS, 

Control Solution 
Method NLP Seed Objective Time 

(sec)
Computation 

Time
ψ Triplanner N/A 134 4.07 ms
ψ GPOPS-II Triplanner 129.9 2.12 s

a, ψ Triplanner N/A 364 10.4 ms
a, ψ GPOPS-II Triplanner 120.4 2.9 s

Table 2: Simulation results.
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computational efficiencies and trajectory solutions, provided by the 
Triplanner  algorithm, can be exploited with optimal control software 
to produce accurate and efficient path results in minimum time.  
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