Monte Carlo Simulations of Three-dimensional Electromagnetic Gaussian Schell-model Sources

Milo W. Hyde IV
Air Force Institute of Technology

Santasri Bose-Pillai
Air Force Institute of Technology

Olga Korotkova
University of Miami

Follow this and additional works at: https://scholar.afit.edu/facpub

Part of the [Applied Mathematics Commons](https://scholar.afit.edu/facpub), and the [Electromagnetics and Photonics Commons](https://scholar.afit.edu/facpub)

Recommended Citation

Monte Carlo simulations of three-dimensional electromagnetic Gaussian Schell-model sources

Milo W. Hyde IV, Santasri R. Bose-Pillai, and Olga Korotkova

Abstract: This article presents a method to simulate a three-dimensional (3D) electromagnetic Gaussian-Schell model (EGSM) source with desired characteristics. Using the complex screen method, originally developed for the synthesis of two-dimensional stochastic electromagnetic fields, a set of equations is derived which relate the desired 3D source characteristics to those of the statistics of the random complex screen. From these equations and the 3D EGSM source realizability conditions, a single criterion is derived, which when satisfied guarantees both the realizability and simulatability of the desired 3D EGSM source. Lastly, a 3D EGSM source, with specified properties, is simulated; the Monte Carlo simulation results are compared to the theoretical expressions to validate the method.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (000.5490) Probability theory, stochastic processes, and statistics; (030.0030) Coherence and statistical optics; (030.1640) Coherence; (030.6600) Statistical optics.

References and links

1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
2. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
1. Introduction

The behavior of two-dimensional (2D) stochastic electromagnetic (EM) fields has and continues to be an important and popular topic of optics research [1–6]. This area of study is quite mature and optical systems that exploit coherence and polarization to beam shape, mitigate atmospheric scintillation, or reduce speckle are being developed [7–12].

For certain scenarios, e.g., near-field beam shaping [13–16], observing in the near zone of a scatterer, or observing in the vicinity of a caustic, a full, three-dimensional (3D) vector treatment of the field is required. The study of light’s behavior under these and other similar conditions motivates research involving 3D stochastic EM fields. Much of the published work on this subject involves defining physically significant statistics of 3D random EM fields, most notably, the degree of coherence [17,18], Stokes parameters [19], and the degree of polarization [20,21]. To date, little work has been performed developing 3D random field models (counterparts to the ubiquitous Schell-model sources in 1D and 2D) or in synthesizing 3D random field instances.

Here, a method to simulate a 3D electromagnetic Gaussian Schell-model (EGSM) source with desired shape and coherence properties is presented. The 3D EGSM source was recently introduced in Ref. [22]. There, the authors derived a set of conditions that all 3D EGSM sources must satisfy in order to be physically realizable sources.

Using the complex screen method (originally developed for the synthesis of 2D random fields) [23–25], equations relating the desired 3D EGSM source parameters (source widths, spatial correlation radii, et cetera) to the random complex screen parameters are derived. Then, using these equations and the realizability conditions developed in Ref. [22], a single criterion is found, which when satisfied guarantees that the desired 3D EGSM source is both realizable and simulatable. Lastly, a 3D EGSM source, with specified properties, is simulated using the 3D complex screen method. The simulated results are compared to the analytical expressions to validate the analysis.

It should be noted that no device or method for physically realizing a designer 3D EGSM source currently exists. Nevertheless, the work presented here provides a recipe for generating...
such a source should the technology become available. This work can be put to immediate use in wave optics simulations of scenarios similar to those mentioned above.

2. Theory

The cross-spectral density matrix elements of a 3D EGSM source take the form

\[W_{ij}(r_1, r_2) = A_i A_j B_{ij} \exp \left(-\frac{r^2_{ij}}{4\sigma^2_i} \right) \exp \left(-\frac{r^2_{ij}}{4\sigma^2_j} \right) \exp \left(-\frac{|r_1 - r_2|^2}{2\delta^2_{ij}} \right), \]

where \(i, j = x, y, z, A_i \) is the amplitude of the \(i^{th} \) field component, \(B_{ij} \) is the complex cross-correlation coefficient between the \(i^{th} \) and \(j^{th} \) components, \(\sigma_i \) is the spectral density width of the \(i^{th} \) component, \(\delta_{ij} \) is the width of the cross-correlation function between the \(i^{th} \) and \(j^{th} \) components, and \(r = \hat{x} x + \hat{y} y + \hat{z} z \) \[22\]. For the 3D EGSM source to be physically realizable, the \(\delta_{ij} \) and \(B_{ij} \) must satisfy \[22\]

\[\delta_{ij} = \delta_{ji}, \]

\[B_{ij} = B_{ji}^*, \]

\[\delta_{ii}^2 + \delta_{jj}^2 \leq 2\delta_{ij}^2 \]

\[|B_{xy}|^2 \left(\frac{\delta_{xy}^2}{\delta_{xx} \delta_{yy}} \right)^3 + |B_{xz}|^2 \left(\frac{\delta_{xz}^2}{\delta_{xx} \delta_{zz}} \right)^3 + |B_{yz}|^2 \left(\frac{\delta_{yz}^2}{\delta_{yy} \delta_{zz}} \right)^3 \leq 1 - 2|B_{xy}||B_{xz}||B_{yz}| \left(\frac{\delta_{xy} \delta_{xz} \delta_{yz}}{\delta_{xx} \delta_{yy} \delta_{zz}} \right)^3. \]

In addition, \(B_{ii} = 1 \) and \(|B_{ij}| \leq 1 \) when \(i \neq j \).

Generating 3D EGSM sources can be accomplished by using extensions of the techniques discussed in Refs. [24–26]. Since it forms the basis of the modified phase screen technique [27,28], the complex transmittance screen approach (in this context, more accurately termed the complex volume approach) is presented here. The traditional Gaussian phase screen [24–26] details can be derived in a similar manner; for completeness, the phase screen expressions are provided in Appendix A.

Let an instance of the \(i^{th} \) component of a 3D EGSM source be

\[E_i(r) = C_i \exp \left(-\frac{r^2}{4\sigma^2_i} \right) T_i(r), \]

where \(C_i \) is the complex amplitude and \(T_i \) is the random complex transmittance screen. Taking the vector autocorrelation of Eq. \(6\) produces

\[\langle E_i(r_1) E_j^*(r_1) \rangle = C_i C_j^* \exp \left(-\frac{r^2_{ij}}{4\sigma^2_i} \right) \exp \left(-\frac{r^2_{ij}}{4\sigma^2_j} \right) \langle T_i(r_1) T_j^*(r_2) \rangle. \]

Comparing Eqs. \(7\) and \(1\) reveals the following:

\[|C_i| = A_i \]

\[\arg \left(C_i C_j^* \right) = \arg \left(B_{ij} \right) \]

\[\langle T_i(r_1) T_i^*(r_2) \rangle = \exp \left(-\frac{|r_1 - r_2|^2}{2\delta_{ii}^2} \right). \]

\[\langle T_i(r_1) T_j^*(r_2) \rangle = B_{ij} \exp \left(-\frac{|r_1 - r_2|^2}{2\delta_{ij}^2} \right). \]
One is free to choose the amplitudes \(A_i \) and the spectral density widths \(\sigma_i \) of the 3D EGSM source. The phase angles \(\arg(B_{ij}) \) are solutions to

\[
\begin{pmatrix}
1 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
\alpha_x \\
\alpha_y \\
\alpha_z
\end{pmatrix}
= \begin{pmatrix}
\theta_{xy} \\
\theta_{xz} \\
\theta_{yz}
\end{pmatrix},
\]

where \(\alpha_i = \arg(C_i) \) and \(\theta_{ij} = \arg(B_{ij}) \). Solving the above system of equations reveals that \(\theta_{xy} + \theta_{yz} = \theta_{xz} \); thus, two of the three phase angles can be chosen freely, the last is determined by the other two. This stands in contrast to the 2D case where one is free to choose the phase angle \([24]\).

Lastly, the \(|B_{ij}| \) and \(\delta_{ij} \) are coupled and even if realizable [i.e., the desired values satisfy Eqs. (2)–(5)], the source they describe may not be simulatable using the complex screen approach. The question of whether a desired 3D EGSM source is simulatable is addressed in the next section.

2.1. \(T_i \) generation

A complex screen \(T_i \) can be generated using the Monte Carlo spectral method (MCSM) \([23, 24, 29, 30]\). Using the MCSM (not reviewed here), a realization of \(T_i \) takes the form

\[
T_i[i, j, k] = \sum_{l, m, n} r_i[l, m, n] \sqrt{\Phi_{ii}(l, m, n)} \exp\left(\frac{2\pi}{L_x} \frac{i}{l} \right) \exp\left(\frac{2\pi}{L_y} \frac{j}{m} \right) \exp\left(\frac{2\pi}{L_z} \frac{k}{n} \right),
\]

where \(i, j, k \) are discrete spatial indices, \(l, m, n \) are discrete spatial frequency indices, \(r_i \) is a 3D matrix of zero-mean, unit-variance circular complex Gaussian random numbers, \(L_x, L_y, L_z \) are the physical sizes of the grid in the \(x, y, \) and \(z \) directions, respectively, and \(\Phi_{ii} \) is the spatial power spectrum of the screen:

\[
\Phi_{ii}(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left(-\frac{r^2}{2\delta_{ii}^2}\right) \exp(-j2\pi f \cdot r) \, d^3r.
\]

Note that Eq. (10) is in the form of a discrete inverse Fourier transform; thus, \(T_i \) can be generated quickly using the fast Fourier transform algorithm.

Generating \(T_i \) using Eq. (10) will produce a screen with the desired \(\delta_{ij} \) and, via Eq. (6), a 3D EGSM source with the desired \(W_{ij} \). To produce a 3D EGSM source with the desired \(W_{ij} \) requires examination of the cross-correlation of the \(T_i \) and \(T_j \) screens, namely,

\[
\langle T_i[l_1, j_1, k_1] T_j^*[l_2, j_2, k_2]\rangle = \sum_{l_1, m_1, n_1, l_2, m_2, n_2} \langle r_i[l_1, m_1, n_1] r_j^*[l_2, m_2, n_2]\rangle
\times \sqrt{\Phi_{ii}(l_1, m_1, n_1) \Phi_{jj}(l_2, m_2, n_2)} \exp\left(\frac{2\pi}{L_x} (l_1 l_2) \right) \exp\left(\frac{2\pi}{L_y} (m_1 m_2) \right) \exp\left(\frac{2\pi}{L_z} (n_1 n_2) \right).
\]

The moment in Eq. (12) is \(2\Gamma_{ij}\delta[l_1 - l_2]\delta[m_1 - m_2]\delta[n_1 - n_2] \), where \(\delta \) is the discrete Dirac delta function and \(0 \leq \Gamma_{ij} \leq 1 \) is the correlation coefficient between the 3D matrices of Gaussian random numbers \(r_i \) and \(r_j \). Substituting in the expressions for the spatial power spectra [recall
A 3D plot of this simulatability condition is shown in Fig. 1. Figure 1(a) shows a view of the volume’s surface with the interior removed and (b) shows a view of the surface from a different angle. The volume intersects each primary plane in a quarter circle. Any Γ_{ij} combination that results in a point within the volume (underneath the surface in Fig. 1) is both a realizable and simulatable 3D EGSM source. If $\Gamma_{xz} = 0$, implying that $|B_{xz}| = |B_{yz}| = 0$ (physically reducing a 3D EGSM source to a 2D one, assuming that $W_{xz} = 0$), then Eq. (20) reduces to $\Gamma_{xy} \leq 1$ which is always true. Thus, satisfying Eq. (20) guarantees realizability and simulatability of that particular 3D EGSM source as well as all 2D EGSM sources which can be derived from it.

$$\langle T_j \mid [i_1, j_1, k_1] T_j^* \mid [i_2, j_2, k_2] \rangle = \sum_{l,m,n} \left\{ \Gamma_{ij} \left(2\pi \delta_{li} \delta_{lj}\right)^{3/2} \exp \left[-\pi^2 \left(\delta_{li}^2 + \delta_{lj}^2\right) \left(l^2 + m^2 + n^2\right)\right]\right\}$$

$$\times \exp \left[\frac{2\pi}{L_x} l (i_1 - i_2)\right] \exp \left[\frac{2\pi}{L_y} m (j_1 - j_2)\right] \exp \left[\frac{2\pi}{L_z} n (k_1 - k_2)\right].$$

The expression in the braces must equal the spatial cross-power spectrum,

$$\Phi_{ij} (f) = \iiint_{-\infty}^{\infty} \left|B_{ij}\right|^2 \exp \left(-\frac{\pi^2}{2\delta_{ij}^2}\right) \exp (-j2\pi f \cdot r) \, d^3r,$$

$$= \left|B_{ij}\right| \left(2\pi \delta_{ij}^2\right)^{3/2} \exp (-2\pi^2 \delta_{ij}^2 f^2)$$

To produce the desired 3D EGSM source. Comparing the braced expression in Eq. (13) with Eq. (14), it is clear that

$$\delta_{ij} = \sqrt{\delta_{ii}^2 + \delta_{jj}^2}$$

$$\left|B_{ij}\right| = \Gamma_{ij} \left(\frac{\delta_{ii} \delta_{jj}}{\delta_{ij}^2}\right)^{3/2} = \Gamma_{ij} \left(\frac{2 \delta_{ii} \delta_{jj}}{\delta_{ii}^2 + \delta_{jj}^2}\right)^{3/2}.$$
2.2. Summary of 3D EGSM source simulation process

Before proceeding to the simulation results, a step-by-step description of the complex screen 3D EGSM source simulation process is warranted:

1. Choose values for the free source parameters σ_i and A_i, which are related to the screen parameters $|C_i|$ via Eq. (16).

2. Choose values for the phase angles $\arg(B_{ij}) = \theta_{ij}$, which are related to $\arg\left(C_i C_j^*\right)$ via Eq. (17). Recall that $\theta_{xy} + \theta_{yz} - \theta_{xz} = 0$. The pseudoinverse of the matrix in Eq. (9) can be used to find simulatable phase angles which are closest (minimum Euclidean norm) to a set of three desired phase angles.

3. Choose values for the coupled source parameters δ_{ij} and B_{ij}. Recall that δ_{ij} is set by the values of δ_{ii} and δ_{jj} [see Eq. (18)].

4. Ensure source realizability [see Eqs. (2)–(5)] and simulatability [see Eq. (20)]. Steps 3 and 4 can be combined into a single step where the desired coupled parameters are inputs into a constrained nonlinear optimization routine that returns the screen parameters δ_{ii}, δ_{jj}, and Γ_{ij} which yield realizable and simulatable source parameters closest (by minimizing a user specified norm) to the desired parameters.

5. Generate 3 3D matrices of correlated, zero-mean, unit-variance circular complex Gaussian random numbers r_i. The covariance matrix is formed from the values of Γ_{ij} found in step 4.

6. Generate a T_i realization using Eq. (10).

7. Form 3D EGSM source instance E_i using Eq. (6).
3. Simulation

3.1. Simulation details

Table 1. 3D EGSM Source Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_x</td>
<td>1</td>
</tr>
<tr>
<td>A_y</td>
<td>1.5</td>
</tr>
<tr>
<td>A_z</td>
<td>2</td>
</tr>
<tr>
<td>σ_x</td>
<td>4 cm</td>
</tr>
<tr>
<td>σ_y</td>
<td>5 cm</td>
</tr>
<tr>
<td>σ_z</td>
<td>10 cm</td>
</tr>
<tr>
<td>δ_{xx}</td>
<td>2 cm</td>
</tr>
<tr>
<td>δ_{yy}</td>
<td>3 cm</td>
</tr>
<tr>
<td>δ_{zz}</td>
<td>5 cm</td>
</tr>
<tr>
<td>δ_{xy}</td>
<td>2.55 cm</td>
</tr>
<tr>
<td>δ_{xz}</td>
<td>3.81 cm</td>
</tr>
<tr>
<td>δ_{yz}</td>
<td>4.12 cm</td>
</tr>
<tr>
<td>B_{xy}</td>
<td>$0.222 \exp(j\pi/2)$</td>
</tr>
<tr>
<td>B_{xz}</td>
<td>$0.286 \exp(j\pi/3)$</td>
</tr>
<tr>
<td>B_{yz}</td>
<td>$0.539 \exp(-j\pi/6)$</td>
</tr>
</tbody>
</table>

To validate the above analysis, a 3D EGSM source was simulated using the complex screen technique. The EGSM source parameters are listed in Table 1. The computational volume was discretized using 512 points per side with a sample spacing equal to 1.37 mm, making the total physical size of the grid $0.7 \times 0.7 \times 0.7$ m. The component spectral densities S_i and spectral degrees of correlation μ_{ij},

$$ S_i (r) = W_{ii} (r, r) = \langle |E_i (r)|^2 \rangle $$
$$ \mu_{ij} (r_1, r_2) = \frac{W_{ij} (r_1, r_2)}{\sqrt{S_i (r_1) S_j (r_2)}} $$

were computed from 500 complex screen field instances. The simulated S_i and μ_{ij} were then compared to the corresponding theoretical quantities to verify that the desired 3D EGSM source had been realized.

3.2. Results

3.2.1. Spectral densities S_i

Figures 2 and 3 show spectral density S results. To give the reader an understanding of what a complex screen 3D EGSM source looks like, Fig. 2 shows two views of the spectral density volume computed from a single realization of the 3D EGSM source whose parameters are given in Table 1. Figure 2(a) shows a view of the volume’s surface, while Fig. 2(b) shows the x-y, x-z, and y-z planar slices through the volume.

Figure 3 shows the theoretical (solid traces) and simulated (circles) (a) x, (b) y, and (c) z spectral densities, respectively. The agreement between the simulated and theoretical results is excellent. These results verify that the complex screens, on average, are producing a 3D EGSM source with the desired shape. To verify that the resulting source has the desired coherence properties, the spectral degrees of correlation μ_{ij} must be examined.

3.2.2. Spectral degrees of correlation μ_{ij}

Figures 4 and 5 show spectral degree of correlation results. Figure 4 shows the theoretical (solid traces) and simulated (circles) (a) μ_{xx}, (b) μ_{yy}, and (c) μ_{zz} results, respectively; Fig. 5 shows the
Fig. 2. Single realization spectral density volume of the complex screen 3D EGSM source whose parameters are given in Table 1—(a) surface view and (b) x-y, x-z, and y-z planar slices.

Fig. 3. Spectral densities theory (solid traces) versus simulation (circles) in the (a) x, (b) y, and (c) z directions.
Fig. 4. Spectral degrees of correlation theory (solid traces) versus simulation (circles)—(a) real and imaginary parts of μ_{xx}, (b) real and imaginary parts of μ_{yy}, and (c) real and imaginary parts of μ_{zz}.

Fig. 5. Spectral degrees of correlation theory (solid traces) versus simulation (circles and squares)—(a) real and imaginary parts of μ_{xy} and μ^*_{yx}, (b) real and imaginary parts of μ_{xz} and μ^*_{zx}, and (c) real and imaginary parts of μ_{yz} and μ^*_{zy}.
theoretical (solid traces) and simulated (circles and squares) (a) μ_{xy} and μ_{yx}^*, (b) μ_{xz} and μ_{zx}^*, and (c) μ_{yz} and μ_{zy}^*, respectively. In Figs. 4 and 5, both the real and imaginary parts of μ_{ij} are plotted.

Again, the agreement between the simulated and theoretical results is excellent. These results combined with the spectral density results in Fig. 3 validate the complex screen simulation procedure developed in Section 2.

4. Conclusion

In this paper, the simulation of a 3D EGSM source using the complex screen technique was investigated. Relationships between the source parameters (A_i, B_{ij}, σ_i, and δ_{ij}) and the complex screen parameters were derived and discussed. Using these expressions and the recently published 3D EGSM source realizability conditions [22] yielded a new, single simulatability criterion. When satisfied, this condition guaranteed both realizability and simulatability of the desired 3D EGSM source using the complex screen method.

To validate the analysis, a 3D EGSM source was simulated using the complex screen technique. The simulated directional spectral densities and spectral degrees of correlation were compared to those of the true 3D EGSM source. The agreement between the simulated and theoretical results was excellent.

Although no device or method for physically realizing a desired 3D EGSM source yet exists, this paper provides the basic recipe for generating such a source if or when the technology becomes available. In the meantime, the technique and procedure for simulating 3D EGSM sources developed here will find use in optical simulations involving non-paraxial, partially coherent EM fields, e.g., in simulations where a random field is observed in the near zone of a scatterer or in the vicinity of a tight focus, or caustic.

A. Phase screen 3D EGSM Sources

An instance of the i^{th} component of a phase screen 3D EGSM source is

$$ E_i(r) = C_i \exp \left(-\frac{r^2}{4\sigma_{\phi_i}^2}\right) \exp [j\phi_i(r)], \quad (22) $$

where ϕ_i is the random 3D phase screen. The relationships between the 3D EGSM source and phase screen parameters are

$$ A_i = |C_i| \quad (23) $$

$$ \arg (B_{ij}) = \arg \left(C_i C_j^*\right) \quad (24) $$

$$ \delta_{ii} = \ell_{\phi_i \phi_i} \quad (25) $$

$$ \delta_{ij} = \frac{1}{\sqrt{2}} \sqrt{4\Gamma_{\phi_i \phi_j} \sigma_{\phi_i} \sigma_{\phi_j}^{\prime} \ell_{\phi_i \phi_i} \ell_{\phi_j \phi_j}} \left(\frac{\ell_{\phi_i \phi_i} \ell_{\phi_j \phi_j}}{2\ell_{\phi_i \phi_j} \ell_{\phi_j \phi_i}}\right)^{1/4} \quad (26) $$

$$ |B_{ij}| = \exp \left[-\frac{1}{2} \left(\sigma_{\phi_i}^2 - \frac{4\Gamma_{\phi_i \phi_j} \sigma_{\phi_i} \sigma_{\phi_j}^{\prime} \ell_{\phi_i \phi_i} \ell_{\phi_j \phi_j}}{\ell_{\phi_i \phi_i} + \ell_{\phi_j \phi_j}} \sqrt{\frac{2\ell_{\phi_i \phi_j} \ell_{\phi_j \phi_i}}{\ell_{\phi_i \phi_i} + \ell_{\phi_j \phi_j}} + \sigma_{\phi_j}^2}\right]\right] \quad (27) $$

$$ \sigma_{\phi_i}, \sigma_{\phi_j} \geq \pi, \quad (28) $$

where $0 \leq \Gamma_{\phi_i \phi_j} \leq 1$ is the correlation coefficient between the i^{th} and j^{th} component phase screens and $\sigma_{\phi_i}^2$ and $\ell_{\phi_i \phi_i}$ are the variance and spatial correlation radius of the i^{th} component phase screen, respectively.
Via the MCSM, a phase screen instance can be generated by using

\[
\phi_i [l, m, n] = \text{Re} \left\{ \sum_{l,m,n} r_i [l, m, n] \sqrt{\frac{\Phi_{\phi_i, \phi_i}[l, m, n]}{L_x L_y L_z}} \exp \left(\frac{2\pi}{L_x} li \right) \exp \left(\frac{2\pi}{L_y} mj \right) \exp \left(\frac{2\pi}{L_z} nk \right) \right\},
\]

(29)

where \(\Phi_{\phi_i, \phi_i} \) is the spatial power spectrum of the \(i \)th component screen, namely,

\[
\Phi_{\phi_i, \phi_i} (f) = \iiint_{-\infty}^{\infty} \sigma_{\phi_i}^2 \exp \left(-\frac{r^2}{\ell_{\phi_i}^2} \right) \exp \left(-j2\pi f \cdot r \right) d^3 r
\]

\[
= \sigma_{\phi_i}^2 \left(\pi \ell_{\phi_i}^2 \sigma_{\phi_i}^2 \right)^{3/2} \exp \left(-\pi^2 \ell_{\phi_i}^2 \sigma_{\phi_i}^2 f^2 \right)
\]

(30)

and \(r_i \) is a 3D matrix of zero-mean, unit-variance circular complex Gaussian random numbers.

The steps for generating a phase screen 3D EGSM source instance are generally the same as the complex screen steps listed above. Because of the complicated nonlinear equations relating the source parameters to the phase screen parameters [see Eqs. (25)–(28)], steps 3 and 4 of the source simulation process are much more difficult than in the complex screen case.

Funding

Acknowledgments

The views expressed in this paper are those of the authors and do not reflect the official policy or position of the US Air Force, the Department of Defense, or the US government.