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Abstract

Deceptive fitness landscapes are a growing concern for evolutionary computation.

Recent work has shown that combining human insights with short-term evolution

has a synergistic effect that accelerates the discovery of solutions. While humans

provide rich insights, they fatigue easily. Previous work reduced the number of hu-

man evaluations by evolving a diverse set of candidates via intermittent searches for

novelty. While successful at evolving solutions for a deceptive maze domain, this ap-

proach lacks the ability to measure what the human evaluator identifies as important.

The key insight here is that multi-objective evolutionary algorithms foster diversity,

serving as a surrogate for novelty, while measuring user preferences. This approach,

called Pareto Optimality-Assisted Interactive Evolutionary Computation (POA-IEC),

allows users to identify candidates that they feel are promising. Experimental results

reveal that POA-IEC finds solutions in fewer evaluations than previous approaches,

and that the non-dominated set is significantly more novel than the dominated set. In

this way, POA-IEC simultaneously leverages human insights while quantifying their

preferences.
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LEVERAGING HUMAN INSIGHTS BY COMBINING

MULTI-OBJECTIVE OPTIMIZATION WITH INTERACTIVE EVOLUTION

I. Introduction

A recent dialog in Evolutionary Computation (EC) has begun to address how

traditional objective-based evolutionary methodologies fail when presented with a

deceptive problem domain. Traditionally, this problem is addressed through diversity

maintenance techniques, namely speciation, fitness proportional selection, and multi-

objective algorithms. The goal of such techniques is to promote behavioral diversity,

though none of them reward unique behaviors explicitly. Instead, they attempt to

replicate behavioral diversity through genotypic diversity approaches that maintain

unique genomes. Speciation and fitness proportional selection each artificially main-

tain a specific number of different genotype categories in an effort to prevent non-fit,

possibly crucial behaviors from being eliminated from the population [46]. Fitness

diversity has also been applied to encourage behavioral diversity (multi-objective

algorithms). Multi-Objective Evolutionary Algorithms (MOEAs) use multiple, pos-

sibly competing objective functions simultaneously, maintaining any non-dominated

behaviors (i.e. any individual such that no other individual is more fit in every ob-

jective) [6]. In this way, MOEAs create a diversity of fitness characteristics that

maintains sufficient behavior diversity. This thesis demonstrates, through the use of

multi-objective algorithms and human-computer collaboration, that fitness diversity

can in fact provide the necessary behavioral diversity to overcome a deceptive domain.

More recent work with deceptive domains has demonstrated the effectiveness of

ignoring the overall objective and instead rewarding unique behaviors to create behav-
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ioral diversity. This approach, called novelty search [30], focuses solely on uniqueness

when ranking solutions, ignoring their objective fitness at a given task. By calculat-

ing the sparsity of solution behaviors, novelty search rewards individuals that express

new, interesting behaviors that break from the norm. This approach does not re-

quire that solutions be adept at a task, only that they are novel. The key concept of

novelty search is that it does not eliminate essential stepping stones that are crucial

to evolutionary success. In other words, novelty provides a mechanism for rewarding

behaviors that score poorly in terms of fitness in order to escape local optima. Nov-

elty, with its inherent ability to avoid deception, was shown to consistently provide

solutions in a deceptive maze-navigation domain [30, 32] that was designed to thwart

a fitness-based search.

The deceptive maze, introduced by Lehman and Stanley [30, 32], is specifically

designed to be have local optima that intuitive objective functions are unable to

escape. The maze contains a cul-de-sac that approaches near the goal, providing a

very high fitness score for an objective function that measures a solution’s “endpoint

distance to the goal.” Such objective functions rarely escape the local optimum.

The same work demonstrates, however, that novelty search in the same deceptive

domain consistently finds solutions, effectively overcoming the deception. It is in

this domain that the technique introduced by this thesis will show that MOEAs

in combination with human-computer collaboration can provide behavioral diversity

that is subjectively similar to that of novelty search.

Searching for behavioral novelty as a way of avoiding deception has proven to be

effective in a wide variety of domains: Gomes et al. [16] applied novelty search to the

evolution of robotic swarms, Naredo and Trujillo [35] applied novelty search to data

clustering, as well as many other domains [12, 29, 36]. Novelty search has consistently

demonstrated itself as an effective method of maintaining behavioral diversity. This
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deception-avoiding quality of novelty search has enabled algorithms to solve complex

problems with EC in a much shorter amount of time and with fewer computational

resources than objective-based search.

Interestingly, another approach that is effective at finding solutions to difficult

problems is Interactive Evolutionary Computation (IEC) [48]. Under IEC, humans

guide the evolutionary process through selective breeding. Dawkins [7] introduced the

concept of IEC via the Biomorphs application, a program that used human selections

to guide the evolution of insect-like images. He was able to demonstrate that humans

provide key insights in evolution of creative domains that are difficult to capture with

objective functions. Additionally, he found that the human insights provided a key

mechanism for escaping local optima, as human intuitions are not subject to the same

fixed limitations as a predefined objective function. Applying this technique, Sims

[42] used IEC to evolve two-dimensional images of plants and, more recently, IEC has

been used to evolve drumbeats [17] and even harmonies [18] to existing songs. Such

subjective tasks are exceedingly difficult to characterize objectively. IEC, however,

provides a mechanism which allows a human user to guide evolutionary processes

using intuition and subjectivity.

However, Takagi [48] demonstrated that the limiting factor in every IEC instance is

human fatigue. He explains that a typical IEC session lasts only about 20 generations,

which may not be long enough to make meaningful progress in an evolution. This

roadblock has motivated research into fatigue reduction. A concept of distributing

workload between many users has been particularly successful in reducing individual

fatigue. Sims [43] created an interactive art exhibit where users were able to “vote” on

two-dimensional images they liked. In this way, many users helped evolve interesting

artwork over the course of a longer period of time, with no one individual becoming

fatigued. Sims [45] later performed a similar experiment to evolve three-dimensional
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sea creatures, again utilizing a many-user interactive exhibit to generate a variety

of unique sea creatures. More recently, Draves [13] introduced a many-user screen-

saver IEC project called Electric Sheep. This project lets users vote on their favorite

screensavers, using a collaborative system to evolve a variety of screensavers. Another

collaborative IEC effort recently demonstrated the ability for a community of users

to evolve unique images using the Picbreeder online service [39, 40].

While successful, the many-user approach to IEC has certain pitfalls that reduce

its efficacy as, in certain complex problem domains, it becomes infeasible to distribute

workload over many users. In these domains, a single user has a more focused concept

of a final solution and is more effective at guiding to that particular solution than

a community of users. Fatigue distribution cannot help in these situations, creating

the need for different fatigue reduction techniques.

A method of reducing fatigue while limiting the interaction to a single user is a

fusion of two approaches, combining short-term search with interactive computing.

Schmidt and Lipson [38] first introduced the concept, modeling user selections to

guess which individual the IEC user would select next, attempting to preempt the user

with useful suggestions. Hornby and Bongard [19] improved on this idea by running

a fully automated fitness-based evolutionary search in the background, with human

intervention at certain points to guide overall evolution. This concept worked well,

but the short-term search still exhibited the deceptive tendencies to which objective-

based approaches fall prey. Most recently, Woolley and Stanley [51] showed that

an automated novelty search could greatly reduce the human fatigue inherent in

IEC by generating important stepping stones, a capability well-known in novelty

search. This approach, called novelty-assisted interactive evolutionary computation

(NA-IEC) uses short-term automated novelty search as a way to accelerate IEC and

reduce fatigue by presenting the human evaluator with a diverse set of candidate
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behaviors. This diversity of behaviors is key to enabling the human user to effectively

select and make progress quickly. NA-IEC evolved neurocontrollers for robots in

deceptive mazes [30, 32] in significantly fewer evaluations (and less time overall) than

any previous methodology [3, 19, 30, 32].

With a main solution to the fatigue problem being an automated approach, one

might suppose that eliminating the human entirely is the best search solution. How-

ever, Woolley and Stanley [50] showed that images evolved using the Picbreeder online

service [39, 40] could not be re-evolved in an automated manner with the same al-

gorithms, supporting the findings of Dawkins [7] and Sims [42] and indicating that

the unique insights a human provides serve an important role with regard to what

can be discovered in a solution space. It is important, then, to try and better model

human selections in an attempt to predict the next step in evolution. Better predic-

tive models will accelerate IEC, reducing fatigue and enhancing the capabilities of

the system.

1.1 Motivation

The concept of autonomy (i.e. the next step beyond automation into behavioral

independence) is of interest to the Air Force, receiving a significant quantity of focus

from Air Force Research Labs (AFRL). Deceptive problem domains are many of the

most interesting and perhaps useful that exist. This research is motivated around

an attempt to sidestep deception in such domains in an attempt to evolve higher

functioning autonomous systems. While the problem domain used in this research is

not directly related to any useful systems, the concepts introduced by this thesis can

be used in arbitrarily complex domains to synthesize autonomous behaviors.
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1.2 Problem Statement

This thesis builds on the work of Woolley and Stanley [51] by attempting to repli-

cate the diversity maintenance mechanism of NA-IEC (i.e. novelty search) with a

multi-objective algorithm that inherently contains a measurable heuristic that can be

used to build such a predictive model. The result is a new approach called pareto

optimality-assisted interactive evolutionary computation (POA-IEC), which is com-

pared against NA-IEC and pure novelty search in its ability to evolve neurocontrollers.

Under POA-IEC, a short-term search based on the non-dominated sorting genetic al-

gorithm (NSGA) [11] progresses evolution in the background, with the non-dominated

set serving as the diversity mechanism. Intuitively, members of the non-dominated

set are shown to be more novel than the remainder of the population. Since each

member of the dominated set lies along similar fitness vectors as the non-dominated

set, they have similar fitness diversity. As such, because the non-dominated set is

more fit than the remainder of the population, they will lie further along the path to

perfect fitness (i.e. closer to a true solution). As few individuals have progressed as

far along the fitness path, the non-dominated set necessarily has a more sparse dis-

tribution than the remainder of the population (i.e. the non-dominated set is more

novel).

1.3 Research Objectives

This research will aim to illustrate the efficacy of POA-IEC in a deceptive maze

domain. The goal is to avoid deception through diversity maintenance via the mecha-

nism of the Pareto Front. By comparing the performance of POA-IEC with NA-IEC,

which significantly outperformed all previous methodologies in the deceptive maze

domain, a comparative analysis can be made to demonstrate the strengths of POA-

IEC. Specifically, the measures of performance used to evaluate POA-IEC are, from
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most to least important, evaluation count, wall clock time, and artificial neural net-

work topological complexity minimization. Additionally, a comparison of the novelty

of the individuals presented to the user (i.e. the Pareto Front) and the novelty of the

rest of the population will show the similarities between the fitness diversity of the

Pareto Front and behavioral diversity.

1.4 Results Contributed

Intuitively, using a multi-objective model to emulate behavioral diversity would

not generate the pivotal stepping stones as well as a novelty-assisted approach. How-

ever, POA-IEC surprisingly outperforms NA-IEC, pure novelty search, and an au-

tomated multi-objective evolutionary algorithm (MOEA) that uses the same fitness

vector, finding solutions in significantly fewer evaluations than any previous method

to date. This supports the idea that fitness diversity resembles behavioral diversity

such that a multi-objective approach can generate appropriate stepping stones in a

deceptive domain.

1.5 Thesis Overview

This thesis will, over the next 5 chapters, cover relevant background (Chapter II),

introduce the POA-IEC Framework (Chapter III), describe the experiment and its

setup (Chapter IV), show the results (Chapter V), and discuss what can be concluded

from the results (Chapter VI). Finally, final remarks and possible future work are both

included in Chapter VI.
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II. Background

This chapter reviews the concepts behind Evolutionary Computing (EC), Artifi-

cial Neural Networks (ANN) and their applications to EC, non-objective and single-

objective methods for Evolutionary Computing, and an overview of multi-objective

evolutionary algorithms (MOEA), including a look at some of the more advanced

MOEA techniques.

2.1 Evolutionary Computing

The field of Evolutionary Computing (EC) has been applied to a wide variety of

applications, finding particular success in optimization problems [23]. They are adept

at solving ill-defined problems with non-obvious optimization criteria and are widely

accepted as solvers for difficult problems.

EC can be broadly divided into several closely related categories [1], the most

popular being genetic algorithms and evolutionary algorithms. In general, most EC

strategies work by a process that mimics natural evolution. By choosing a repre-

sentation of a problem space, a solution can be evolved through the application of a

variety of evolutionary operators, namely mutation, recombination, and selection [1].

The evolutionary operators all modify the genotype (i.e. the “genetics”) of the solu-

tion, with the resulting phenotype (i.e. the expression of the genotype) representing

the domain-specific behaviors [6]. The operators each affect the genotype in a specific

way.

2.1.1 Mutation.

In biological systems, mutation is inherent in every day life. When a cell’s DNA

mutates, new and unexpected behaviors may be expressed. Whether the phenotypic
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expression of the mutations is beneficial is unknown prior to the mutation. Similarly,

mutation in EC causes new behaviors to emerge in a solution space. For example, in

a maze domain, a mutation of a robot controller may cause the robot to spin in circles

instead of drive in a straight line. This expression of the changed genotype may be less

desirable than the original behavior, in which case the mutation was not beneficial.

The stochastic nature of mutations allows for serendipitous discovery of beneficial

behaviors, however, and is key to escaping local optima in any EC domain [6].

2.1.2 Recombination.

Similar to mutation, recombination directly imitates natural life. Recombination

is simply combining the genetic code of two individuals into a new genotype. In EC,

this is typically implemented using a crossover, where half of the genetic material

from one individual is concatenated with the opposite half of the genetic material

from another individual. The recombination operator allows for useful behaviors

from one individual to be combined with useful behaviors in another individual. This

allows for a “divide and conquer” approach in certain domains, where a successful

solution need not evolve multiple useful behaviors by serendipitous mutation [6].

2.1.3 Selection.

Unlike mutation and recombination, which are completely unaware of the pheno-

type of the individual, the selection operator is purely based on how “fit” an individual

is. In any problem domain, an evaluation of each individual’s expressed behavior must

be completed to assess the fitness of each individual. This value represents how ca-

pable an individual is at carrying out the goal of the domain (e.g. a robot who stands

still would receive a low fitness in a race). There exist many specific selection algo-

rithms, such as fitness proportional selection, rank-based selection, and tournament
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selection, each of which uses the fitness metric in some way to fill a new population

with individuals that can be mutated and recombined. This follows the general idea

of “survival of the fittest”, where only the successful individuals are allowed to pass

on their genetics to the next generation [6].

2.1.4 Behavioral Diversity.

Many evolutionary algorithms require a diversity maintenance mechanism. Be-

cause the selection operator uses fitness to create the next generation of an EC in-

stance, over time, the population will converge to a single, dominant behavior. This

behavior may be the global or a local optimum. Unless mutation is able to overcome

the deception of the local optimum, EC will stall because fitness will cause the pop-

ulation to be dominated by individuals with more fit, locally optimal behaviors. The

problem of deception has spurred research into diversity maintenance mechanisms, to

include speciation and multi-objective algorithms, which will be discussed later.

2.1.4.1 Speciation.

Speciation is a concept that is closely related to real situations. Consider the

canine family—there are many species of canine such as dogs, wolves, coyotes, and so

on. However, these species do not breed with each other, though they all belong to

the canine family. Similarly, speciation in EC separates genotypes by various charac-

teristics into species. By setting minimum selection rates by species, it is possible to

maintain behaviors that may be currently unfit, but are crucial behaviors to achiev-

ing the global optimum. The overall goal of speciation is to guard innovation [46].

Speciation is, however, not true behavioral diversity in that it does not take the diver-

sity of the phenotypic behaviors into account. Rather, it protects certain genotypes

from being extinguished due to poor behaviors. This particular technique is a geno-
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typic diversity mechanism, which may or may not correlate to phenotypic behavioral

diversity. That is, several unique genotypes may express similar phenotypes.

2.2 Artificial Neural Networks

Looking to nature as an inspiration for algorithms and techniques for solving

complex problem has had much success [15]. Just as humans are particularly adept

at information processing, Artificial Neural Networks (ANN), which simulate the

function of biological neurons in a human brain, have been demonstrably successful in

a wide variety of applications including pattern classification, clustering, optimization,

and control [2, 20]. The human brain, being a particularly complex biological entity,

has provided a mechanism to emulate in the form of a neuron.

2.2.1 Artificial and Biological Neurons.

Biological neurons (Figure 1a [41]) are cells that process input data, activating

their outputs if the inputs match certain criteria. A neuron functions by receiving

impulses along dendrites from other neurons. These impulses are processed in the

cell body and a signal is transmitter through the axon to other neurons. Synapses

exist at the ends of the dendrites and axons, which either inhibit or enhance the

signal, depending on learned behavior [2]. The synapse is a chemically-based learning

system that can modify the signals being transmitted from neuron to neuron. Since

a synapse can be modified, it provides a memory mechanism to neurons. All of this

behavior is mimicked by artificial neurons to create a learning system that can be

broken down into atomic units.

An artificial neuron (Figure 1b [4]) mimics the behaviors of a biological neuron.

A neuron has inputs, which are typically real numbers scaled to be between 0.0 and

1.0 or -1.0 and 1.0. Each input is scaled by a weight, which is usually a number in
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(a) Biological Neuron (b) Artificial Neuron

Figure 1. Biological and Artificial Neurons [4, 41] - Artificial neurons are roughly analagous
to biological neurons. Figure 1a shows a biological neuron and 1b shows an artificial neuron. In the
diagram, the inputs of 1b correlate to the axons of other neurons in 1a, the weights correlate to the
synapses at the end of the dendrites, the transfer function and activation function both happen in
the cell body and nucleus, and the output (i.e. activation) correlates to the axon.

the same range as the inputs. A transfer function is applied to the weight × input

calculations, typically a normalizing sum function that transforms all of the inputs

to a meaningful range of numbers. The activation function is then applied to the

result of the transfer function. The activation function is usually a sigmoid function,

though linear, threshold, and Gaussian activation functions have applications in cer-

tain domains. Figure 1b shows a neuron with a threshold activation function (i.e.

once the transfer function’s output reaches the threshold θj, the output will toggle

from a “low” state to a “high” state). The result of the activation function is the

neuron’s output, which feeds another neuron’s input.

Artificial neuron structures are simple analogies that match well to a biological

neuron. The parts of the two neurons are roughly comparable, as shown by Basheer

and Hajmeer [2]: the inputs of the artificial neuron are mapped to the axons of other

neurons, the weights multipliers of the artificial neuron correspond to the synapses

that connect the axons of other neurons to the dendrites of the biological neuron, the

transfer and activation functions happen in the cell body and nucleus of the biological

neuron, and the activation (or output) of the artificial neuron correspond to the axon
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of the biological neuron. In this way, an artificial neuron provides behaviors similar

to those of a biological neuron.

2.2.2 Neural Networks.

When many neuron are chained together, they form a neural network. In biological

neural networks, the axons of one neuron are connected to the dendrites of another

neuron via an impulse-modifying synapse. An ANN has a similar construct by scaling

the output of one neuron by a weight, and feeding the result to the next neuron. In

an ANN, this is called a connection and the weight on the connection is called the

connection weight. In a biological network, learning happens when the synapse is

modified, changing the amount by which the impulse generated a neuron is enhanced

or inhibited. In an ANN, the connection weights are modified to perform a similar

function. In this manner, an ANN learns in much the same way as a biological neural

network.

Another important aspect of an ANN, that will impact its effectiveness, is the

topology of the network (i.e. the layout of the network) [14]. All ANNs have an

“input layer” and an “output layer”. In the input layer, each neuron has what is,

essentially, pass-through functionality. That is, the neuron’s input and output are

the same. This allows an external agent to feed data directly into the neural network.

The output layer is made of typical neurons and the outputs are generally readable

by the same external agent as the feeds the input. The result is a “black box”,

where an agent feeds data to the ANN and reads the result of the calculations. This

makes neural networks ideal for real-time operations, such as controllers for robots.

In such a scenario, the inputs are the readings from various sensors (e.g. range

finders, compasses, etc) and the outputs are mapped directly to motor controls. The
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Figure 2. Multilayer Perceptrons [5] Multilayer perceptrons are a special class of multi-layer
topological ANN. They have unidirectional connections that feed forward from the inputs, to the
hidden layers, to the outputs. There are many other classes and modified versions of the multilayer
perceptron that include features such as connections that feed backwards and loops.

ANN processes the data from the sensors and makes a real-time decision to affect the

motors.

Many domains are too complex for a single layer (i.e. an input and output layer)

topology to make effective decision boundaries. In this case a multi-layer topology

must be used, as shown in Figure 2. In these architectures, at least one “hidden layer”

processes the inputs and sends the results to the next hidden layer or to the output

layer. This creates a situation in which arbitrarily complex decision boundaries can

be drawn by creating a sufficiently complex topology.

There are many algorithms that are effective at learning through modification of

connection weights. The back-propagation algorithm made multi-layer perceptrons

(a specific class of multi-layer topological ANN) very popular in research. Back-

propagation ANNs (BPANN) are the most popular ANN type in use due [20] to their

effectiveness at converging to a solution. Another popular algorithm for ANN training

is the Levenberg-Marquadt (LM) algorithm which, in many cases, is preferred to back

propagation due to the faster convergence of LM [52]. One of the major drawbacks

of the BPANN (and most ANN algorithms until 2003), is the static nature of its

topology. In the human brain, connections between different neurons are constantly
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being created and destroyed to suit the need of the brain. This aspect of the biological

neural network was not imitated until much later.

2.3 NeuroEvolution of Augmenting Topologies

Introduced by Stanley and Miikkulainen [46, 47], the NeuroEvolution of Augment-

ing Topologies (NEAT) algorithm opened a new realm of possibilities for ANNs by

creating a system that could evolve topologies in addition to connection weights. This

eliminated the need to define an arbitrary, possibly overly complex, network topology

prior to solving connection weights, instead allowing for the evolution of small, more

capable networks through standard EC operators. Starting with a minimal network

topology, NEAT complexifies the network via topological mutations that add and

remove nodes and connections to the ANN, while traditional connection weight mu-

tation occurs. In this way, non-intuitive, powerful network topologies can be created

that perform tasks at a higher level than large, overly complex, arbitrary ANNs using

traditional methods [46].

2.3.1 Neurocontroller Representation.

The neurocontrollers in this thesis are evolved using NEAT. A minimal topology

used as a starting point for evolution in this thesis is shown in Figure 3b. The starting

point is a fully connected ANN with no hidden nodes. That is, every input (all of

which are sensory data) are connected to every output (which are read as direction

and velocity controls). In this way, every sensor has an impact on the direction and

velocity outputs. The manner in which the ANN evolves will affect the impact of

each input on the control outputs. As the network complexifies, new behaviors are

expressed that could not be expressed by simpler networks.
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2.3.2 Evolutionary Frameworks.

The underlying implementation of NEAT used for this thesis is called Another

NEAT Java Implementation (ANJI) [22]. ANJI is an open source project built on

the Java Genetic Algorithms Package (JGAP) [33], another open source project that

provides the underlying evolutionary mechanisms to ANJI. A version of ANJI and

JGAP modified to support multi-objective and interactive evolution was created for

this thesis.

2.4 Fitness Search

Fitness search is a central concept to EC that involves assigning a value to a

solution that enumerates a solution’s propensity for satisfying one or more prede-

fined objectives. The more similar a solution to the objective, the higher the score

assigned. The field of EC has traditionally used fitness functions as a driving force

for improvement in a population’s objective ability [1]. Single-objective functions can

provide a good metric of a solution’s comparative success to other solutions within the

population. In this way, the fitness function points the way toward the goal such that

individuals with “better” fitness are selected, propagating their genetics and driving

the population as a whole towards better fitness.

An excellent example of a fitness search was introduced by Sims [44] by evolving

virtual creatures in a three dimensional world. He created a system in which swim-

ming, walking, and jumping behaviors are evolved for different creature morphologies.

That is, he evolved the shape and characteristics of the creatures to discover new crea-

tures. Using traditional EC mutation, recombination, and selection, a wide variety

of creature morphologies were evolved, including some structures that look strikingly

similar to some natural behaviors. The success of this experiment, however, is over-

shadowed by more complex problem domains.
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This classical approach to EC has two issues. One is that different solutions with

similar fitness scores are conflated. The other is that objective-based search fails

in deceptive landscapes, primarily due to a lack of behavioral diversity. In complex

domains, which are inherently deceptive, it performs especially poorly as objective-

based search is effectively a hill climbing algorithm that is unable to escape the local

optima [32].

2.5 Deceptive Maze Domain

Lehman and Stanley [32] define a deceptive objective function as one that “will

deceive search by actively pointing the wrong way.” If the solution to a problem do-

main requires a path through certain intermediate points (i.e. stepping stones), then

the objective function must reward these stepping stones appropriately in order for

evolution to proceed along that path. However, in deceptive domains, the necessary

stepping stones may have low fitness scores, thus causing evolution to avoid the crit-

ical path. These domains have inescapable local optima unless the algorithm can

generate the important stepping stones to overcome hill-climber behaviors. As an

example of such a situation, Lehman and Stanley [30, 32] introduced the deceptive

maze domain as a metaphore for search (Figure 3a).

Here we can see that a simple objective function for this domain is to minimize

Euclidean distance measured from the endpoint of the agent’s path to the goal (i.e.

assign a higher fitness to a low endpoint distance to goal). This fitness function, how-

ever, will spend a significant quantity of time exploring the cul-de-sac directly above

the starting point, as it has a small distance to the goal. Such deceptive elements

significantly hinder fitness-based search to the point that it may not successfully find

a solution in a reasonable amount of time [30, 32]. If the critical stepping stones are

known, it is possible to construct a fitness function that rewards according to reaching
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(a) Robot Configuration (b) ANN Representation

Figure 3. Deceptive Maze and ANN Representation [51] - Figure 3a shows the deceptive
maze domain introduced by Lehman and Stanley [30, 32] and used by Woolley and Stanley [51]. It
is designed to have local optima such that a fitness based solution will struggle to evolve a solution.
The maze is not an meaningful problem domain, but it servers as a metaphor for any problem that
has local optima and deceptive structure. The image also shows the robot configuration used in this
paper, as well as by Woolley and Stanley [51]. The robot includes six laser range-finders that detect
the distance to walls and four pie-slice sensors that activate if the goal is in the quadrant indicated
by that pie-slice. The image shows the active quadrant, indicating a direction to the goal. These
sensors are interpreted as direct inputs to an ANN, shown in (b), that maps the sensory inputs to
motor actions. Though the maze is not visible to the robot, the sensory input allows the evolution
of a control policy to navigate the maze.

the stepping stones. In many problem domains, however, the precise stepping stones

are unknown.

To address the issues inherent in deceptive domains, Lehman and Stanley [30,

32] presented a technique called novelty search, wherein the objective gradient is

abandoned in favor of solution uniqueness as a heuristic for guiding evolution. This

technique is described next.

2.6 Novelty Search

Searching a solution space without regard to an objective is less intuitive, but

has been shown to outperform a fitness based search in deceptive domains [28, 31].

Novelty search assigns fitness based on how unique an individual’s expressed behavior

is with regard to the rest of the population and its ancestors. The more unique a

solution, the higher the score assigned to the solution. This approach addresses the

18



!"#$#%&'(")*+',*(-"./(/0(1234(5&*)6("+%*(

(a) Fitness (b) Directed

(c) Novelty (d) MOEA

(e) IEC Only (f) NA-IEC (g) POA-IEC

Figure 13. Endpoint Distributions Comparison - The distributions of endpoints for candidate
paths show the impact of IEC and MOEA algorithms on the evolution of solutions. The automated
novelty search avoids the deceptive cul-de-sac reasonably well. The automated MOEA spends less
time exploring around the starting point, as the density of the endpoints around the starting location
is less than that of novelty search. Additionally, the MOEA has a more even exploration in the top
part of the maze. NA-IEC and POA-IEC have a clear evolutionary driver (i.e. the human) that
drives endpoints to fall along a certain path. The endpoint density on the two mazes clearly indicates
a human is a favorable addition to the selection algorithm, greatly reducing the endpoint density.
Note that, other than the POA-IEC and MOEA distribution charts, all other distributions are from
the experiment conducted by Woolley and Stanley [51] and are used for comparison.

NA-IEC, they show evidence of exploring the maze in similar ways, indicating that

MOEAs provides similar behavioral diversity that novelty did in NA-IEC.
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5.3 Time

With regard to wall-clock time, Woolley and Stanley [51] reported that NA-IEC

performed faster in time than the automated novelty search. Here, the automated

MOEA search ran in 106 seconds (sd = 85), significantly faster (p < 10−4; Stu-

dent’s t-test) than both NA-IEC and POA-IEC. POA-IEC showed improvement over

NA-IEC in time however, solving the maze in an average time of just 248 seconds

(sd = 269) compared to NA-IEC (402 seconds, sd = 374).

5.4 ANN Complexity

Finally, POA-IEC showed improvement over NA-IEC’s reported ANN complexity

(0.5 hidden nodes, sd = 1.01), finding solutions that averaged just 0.375 hidden

nodes (sd = 0.49). Surprisingly, the automated MOEA evolved even less complex

solutions than both IEC methods, finding solutions that averaged 0.23 hidden nodes

(sd = 0.43).

5.5 Pareto Front Novelty

To validate the methodology of only presenting the user with the first PF in

each run, data was recorded about the novelty of every individual at the time they

entered the population. If the first PF is more novel (i.e. there is more behavioral

diversity) than the remainder of the population, then the addition of the remainder

of the population to the human selection population is unnecessary. Furthermore, the

addition of these results could dilute the population, increasing fatigue and slowing

evolution.

Across all runs, 16,107 individuals were presented to the user (first PF) while

65,072 individuals were hidden. Comparing these two groups, the first PF was found
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to be significantly more novel (p = 0, Student’s t-test) with an average novelty of

8.56 (sd = 9.74) compared to all other PFs combined (novelty of 4.43, sd = 5.17).

Such results quantify the intuition to apply the first PF as a diversity mechanism.

Furthermore, because the non-dominated set is sufficiently novel, the decision to

discard the dominated solutions is validated.

These results are graphically displayed in Figure 14, with a comparison of points

across all runs (Figure 14a) and a comparison in a typical run (Figure 14b). The

comparison of all points shows that the remainder of the population does, indeed,

have some novel individuals. This is certainly the case as there would be individuals

that are dominated by a very novel solution in the first PF that are still novel. It is

the case, however, that there are many more points clustered at low novelty scores

than in the first PF. Additionally, the first PF seems to have a higher density of very

novel individuals than does the remainder of the population. This is more easily seen

in the typical run (Figure 14b), as there are fewer data points. Here, it is apparent

that the first PF has a much less dense cluster at low novelty scores than does the

remainder of the population. This once again validates the approach of keeping only

the first PF and discarding the remainder of the population.

5.6 Pareto Optimality Pointing Vector

As one of the primary motivations for using MOEA assistance for IEC, the ex-

amination of the POPV should yield insight into the human’s intuitions about the

problem domain. Figure 15 shows the POPV broken down into its five component

objective functions across the entirety of a typical POA-IEC run. At first, the POPV

starts as a vector with each element initialized to 0.5 for each objective function. In-

tuitively, any time a POPV component drop below 0.5, the chosen individual is worse

than the average individual seen to that point for that objective function. Therefore,
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(a) All Runs

(b) Typical Run

Figure 14. Pareto Front Novelty Comparison - Comparing the novelty of the first Pareto
Front with the novelty of the remainder of the population demonstrates the similarites between
behavioral diversity and fitness diversity. Figure 14a shows the conglomeration of all experimental
runs, with the points indicating an individual in a run. 14b provides the same information for a
typical run. In each case, the first PF is significantly more novel (p < 0.001; Student’s t-test) than
the remainder of the population.

the chosen individual is being deceived in that objective function as there are indi-

viduals that are more fit in that dimension. This chart tells a story of how the user
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selected individuals while simultaneously providing insight into the deceptive nature

of the domain.

The first individual that the user selects (User Interaction Number 1) creates a

new vector for the POPV. In this new vector, the Distance to Goal, Path Length, and

Robot Speed heuristics each had their POPV component drop below 0.5, implying that

all three of these objective functions were being deceived in the first user selection.

In fact, the Distance to Goal heuristic is so deceived, that it can be inferred that the

user has selected a path that leads far away from the goal. However, the Path Area

and Path Smoothness POPV components each rose very high, implying that these

two objective functions were extremely important to the user at this point. From

these values, it can be inferred that the user has selected a slightly short, high area,

smooth, slower than average solution that leads far away from the goal, compared to

all solutions seen to this point as the POPV is a relative vector.

Next, the individual selects an individual that deceives the same three objective

functions as the first, while the path smoothness remains important and the area

component drops in significance. The Distance to Goal heuristic is less deceived

relatively than the first individual chosen, implying that the distance to goal became

more important than it was with the first selection. Speed and path length did

not change in importance, implying that they are not important yet. From this

selection, we can infer that the user has selected a slightly short, above average area,

smooth, slower than average solution that leads closer to the goal than the first chosen

individual.

Third, the POPV implies that only one out of the five objective functions is

deceived, path length. This selection shows a major increase in the importance of the

distance to the goal and the path area, perhaps implying that the user has navigated

the narrow channel in the middle of the maze and reached the large chamber of the
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Figure 15. Pareto Optimality Pointing Vector During a Typical Run - The Pareto Opti-
mality Pointing Vector (POPV) is a weight vector that indicates the relative weight of each objective
function chosen at each human interaction. This chart shows the POPV changes during a typical
run, broken into its component objective functions. In this particular run, 8 individuals were chosen
and their POPVs were saved.

deceptive maze. Path smoothness did not change much between selection, while robot

speed rose to be above average and the path length component is barely below 0.5.

Next, the user chose an individual that deceives only one objective function, this

time distance to goal. Additionally, from now until the end of the run, the path area

component is maximized at 1. This means that the user chooses individuals that have

the highest area explored until the end of the run. From these two heuristics, we can

infer that the user has chosen a solution that reaches near the top right corner of the

maze, which would deceive the distance to goal heuristic but maximize area explored.

Additionally, the path length and robot speed heuristics both show dramatic increases

in importance, implying that the path length is one of the longest seen yet, further

supporting the idea that this selection reached the top right corner of the maze, and

that it does not stop, which would impact the robot speed score.

54



The next user selection does not change any of the POPV components, implying

a similar (or even the same) selection as the previous step. Perhaps no significant

progress was made in the child generation, which would compel the user to select a

similar behavior as the next evolutionary step.

The next selection, however, is the first selection that does not deceive any of

the objective functions, which are all above 0.5. As the distance to goal component

has risen above 0.5, it can be inferred that the user has selected an individual which

reaches into the chamber of the deceptive maze where the goal resides, but it does

not touch the goal. The next iteration shows similar behaviors implying that the user

selected the same or a similar individual because no progress was made.

The final step shows four out of the five objective function components converging

to be near or at 1. This shows that reaching the goal maximizes fitness on each

objective function such that no other solution has achieved a score as high. The path

smoothness objective is the only one that does not converge to one. This intuitively

happens because a perfectly smooth path is one with no curves, which are necessitated

by the structure of the maze. It is not, however, deceived by the solution.

Of note is the fact that at least one objective function was deceived for 5 out of

the 8 user selections. This shows the importance of the non-dominated set in avoiding

deception as the user’s selected individual was maintained in the population because

it was fit in a different aspect. In this way, the PF preserves diversity.

Figure 16 shows an estimate of what the user selections likely were, based on

what was inferred from the POPV graph in Figure 15. The actual, final path of the

solution is shown in red overlaid on the actual distribution of the run that generated

the POPV graph. Possible selection points are shown by a blue diamond. The amount

of information that can be gleaned from the POPV is significant, allowing the user’s

intuitions to be quantified.
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Figure 16. Pareto Optimality Pointing Vector Inferred Selections - This diagram shows
the actual distribution from which the POPV is Figure 15 derived. The actual, final selection of the
user is shown in red overlaid on top of the actual distribution of the same run. Based on the POPV
changes, the inferred selections that the user made are indicated by blue diamonds.

5.7 User Interactions

Finally, it is important to analyze the human behaviors in the IEC context. Tak-

agi [48] stressed the importance that fatigue is a high priority in an IEC system, a

problem that NA-IEC and POA-IEC both attempt to reduce by providing short-term

search assistance. As shown by Woolley and Stanley [51], NA-IEC reduced the num-

ber of user operations (i.e. mouse clicks selecting various evolutionary options) from

an average of over 1,000 operations for the deceptive maze to an average of 32.0 oper-

ations (sd = 23.5) using NA-IEC. POA-IEC further reduces this number (p < 10−5;

Student’s t-test), with users finding solutions in an average of just 10.26 operations

(sd = 5.81). Of these operations, 94.97% were Pareto operations and 5.03% were Op-

timize functions. Similar to the results with NA-IEC [51], Optimize functions were

applied most often near the end of an evolutionary run when a user was improving an
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established solution to reach the end. Such results show that the MOEA assistance in

POA-IEC speeds evolution and reduces the required number of human interactions.
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VI. Conclusion

As demonstrated by Woolley and Stanley [51], IEC paired with short-term auto-

mated search has a synergistic effect that reduces evaluation and operation count in

the deceptive maze. The MOEA assistance introduced here as a surrogate for novelty

maintained behavioral diversity while simultaneously providing a measurable, learn-

able heuristic to improve the quality of solutions presented to the user. As is common

for MOEAs, deception can be mitigated in a problem domain through the develop-

ment of several simple objective functions. While they are not a complete picture and

will not capture all of the subtleties of a domain, the combination allows evolution

to side-step major deceptive pitfalls by preserving behavioral diversity. Additionally,

while it can be difficult for a human to express what they like about a certain solution,

a variety of objective functions define a behavior vector that can be associated with

a given solution. This behavior vector preserves information that can articulate what

those preference might be.

An interesting discovery from the experimental results was that the automated

MOEA and POA-IEC outperformed pure novelty and NA-IEC respectively. Such

findings suggest that the maze is no longer “hard enough”. That is not to say that

POA-IEC is a panacea, because there will always exist a case where a fitness-based

search (even a multi-objective one) can be deceived. It is plausible to imagine that

a deceptive maze could be created that cause MOEA and POA-IEC to perform at a

lower level due to the nature of that domain.

Another insight from the experimental results is that the POPV provides a picture

of the human user’s thought process during evolution. The ability to track user selec-

tions provided such insight that the user’s selections could be roughly reconstructed.

Additionally, the POPV provided specific information about which objective func-

tions were being deceived at various points in the maze. This gives precise details
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about the domain, such that a “maze profile” could be generated as a metaheuristic

for automated search. In other words, the user’s selections could allow a profile to

be built that would allow an automated process to “click” for the user, providing the

same harsh selection criteria that speeds IEC.

Another interesting realization was that MOEA outperformed POA-IEC in time.

In previous experiments, the addition of a human evaluator helped evolution to such

an extent that the time spent visually processing information overcame the raw speed

of an automated search [51]. In this case, the MOEA outperformed the human-led

search evaluator in wall-clock time, but still expended more evaluations than both

POA-IEC and NA-IEC. In a more difficult maze (e.g. larger with a longer solution

path), it is possible that the search space would be expanded enough that a human

evaluator is once again be needed to contribute their insights, causing POA-IEC to

outperform a fully automated MOEA search in wall-clock time. Perhaps the true

power of POA-IEC may only be properly revealed in a more difficult domain.

Finally, it can be concluded that, in this implementation, fitness diversity and

behavioral diversity are synonymous. This is supported by the observation that the

novelty scores of the first PF are significantly higher than those of the remainder of

the population, implying that the PF is a diverse population. Subjectively speaking,

it is clear from Figures 10 and 11 that the PF presents a diversity of behaviors to the

user, even at the midpoint of the run. In traditional fitness approaches, the behaviors

quickly converge to a single phenotype, eliminating all behavioral diversity. Without

using speciation, the MOEA assistance provides the necessary phenotypic diversity

to maintain a useful population for the user.

In addition to this, the endpoint distributions of the various runs show similar

behaviors (Figure 13). In these distributions, the automated MOEA explores the

maze in a very similar manner to that of the automated novelty search. Similarly,
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POA-IEC and NA-IEC share similar exploration behaviors. This implies that MOEA

(and thus MOEA assistance) provide many of the same stepping stones that novelty

search does, creating a similar search pattern in the maze and providing the assistance

to speed IEC. What is surprising, however, is the extent to which MOEAs improve on

the evaluation count of novelty search. This is perhaps because the multiple objective

functions provide the evolutionary process with enough information about the domain

that it is a more capable algorithm for evolution. A more difficult maze would once

again help test this idea.

6.1 Future Work

There are multiple avenues of further research into this area. Of particular interest

would be to implement one of the many-objective algorithms to test its impact on

POA-IEC. That is, since there are currently five objectives, this experiment techni-

cally fell into the many-objective (not multi-objective) category. Therefore, a more

capable MOEA to emulate would be NSGA-III [10, 21, 53] rather than NSGA-II [11].

However, NSGA-II was chosen to implement because of its simple algorithm. It is

surprising then, even with an algorithm known to struggle as the number of objective

functions exceeds three, that POA-IEC should perform at such a level. Intuitively, an

NSGA-III-like assistance mechanism could only help reduce evaluations and runtime

further.

Additionally, research into “more difficult” mazes could answer the question as to

whether the multi-objective aspects of POA-IEC are providing a greater benefit than

novelty in the general case. It is possible that, as the maze grows larger and more

deceptive, the search space expands and MOEAs would spend more time searching

unproductive areas of the maze. In particular, this could influence the fact that

MOEAs were faster in wall-clock time than were POA-IEC and NA-IEC, contrary
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to the results reported by Woolley and Stanley [51] where NA-IEC was significantly

faster in wall-clock time than novelty search. In a larger, more complex domain, the

benefit of human guidance could overcome the raw speed of an automated MOEA.

Furthermore, an interesting extra function to build into the interface would be a

POPV search button. This button would perform an aggressive search based on the

POPV, essentially selecting an individual and clicking the button for the user based

on the POPV. The user would be able to provide a limit on the number of “automated

clicks”, allowing the user to skip a number of user interactions. To account for the

fact that the user might choose from the top n solutions, some work would need to be

done to identify how often the user selects which individual. That is, determine the

probability that the user selects the top POPV-sorted candidate versus the second

POPV-sorted candidate and so on. Intuitively, this would follow a Gaussian distri-

bution with the user selecting the top POPV-sorted candidate the largest percentage

of the time. Should this be the case, the POPV-based search should click on the top

n individuals following the same empirically determined probability scheme. In other

words, the automated search should select the top POPV-sorted candidate with the

same probability the user does and so on. This functionality can be essentially de-

scribed as “automating the human,” using the human’s previous selections as a guide.

This would theoretically reduce the number of human interactions further, though a

larger maze might once again be needed to determine the significance of this feature.

Lastly, exploration into non-trivial domains to test the efficacy of this framework

in generating useful, autonomous behaviors could prove fruitful in furthering the Air

Force Research Labs goal of autonomy. Perhaps applying this framework to the

problem of Unmanned Aerial Vehicle swarming or flocking behaviors would be an

effective domain where human insights are particularly fruitful. Any autonomous

task that can be represented visually for the human has potential for harnessing his
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or her intuitions, allowing evolutionary computing to create effective autonomous

behaviors.

6.2 Final Remarks

This thesis introduced the pareto optimality-assisted interactive evolutionary com-

putation (POA-IEC) approach. The framework simultaneously generates phenotypic

(i.e. behavioral) diversity while harnessing human intuition to create a synergistic

effect in which the algorithm learns human preferences during evolution and presents

the user with candidate behaviors most similar to those he or she just chose. In

this manner, the approach improves upon previous fitness-based [3, 19] and novelty-

based [51] methodologies by incorporating learnable heuristics into the approach.

This opens new avenues for further exploration into additional automation possi-

bilities by developing a metaheuristic that models human selections in a complex

domain. The framework allows for the definition of objective functions that simplify

a domain, thus reducing the requirements on the algorithm at work by harnessing

the power of human intuition to combine the objective functions in meaningful ways.

The objective functions provide insight to the domain via measurement of human

selections, providing impetus for further fatigue reduction techniques based on au-

tomation of human selections. The results show that the approach reduces fatigue

over previous approaches, accelerating the process of finding high-quality solutions

without requiring step by step evaluation of every candidate.
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http://www.karlsims.com/galapagos/index.html.

46. Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks through
Augmenting Topologies. Evolutionary computation, 10(2):99–127, 2002.

47. Kenneth O. Stanley and Risto Miikkulainen. Competitive Coevolution through
Evolutionary Complexification. Journal of Artificial Intelligence Research, 21
(1):63–100, 2004.

48. Hideyuki Takagi. Interactive Evolutionary Computation: Fusion of the
Capabilities of EC Optimization and Human Evaluation. Proceedings of the
IEEE, 89(9):1275–1296, 2001.

49. Nao Tokui and H Iba. Music Composition with Interactive Evolutionary
Computation. In Proceedings of the Third International Conference on
Generative Art, pages 215–226, 2000.

66

http://www.wpclipart.com/medical/anatomy/cells/neuron/neuron_label_parts.png.html
http://www.wpclipart.com/medical/anatomy/cells/neuron/neuron_label_parts.png.html
http://www.karlsims.com/genetic-images.html
http://www.karlsims.com/galapagos/index.html


50. Brian G. Woolley and Kenneth O. Stanley. On the Deleterious Effects of A
Priori Objectives on Evolution and Representation. Proceedings of the 13th
annual conference on Genetic and Evolutionary Computation - GECCO 2011,
pages 957–964, 2011.

51. Brian G Woolley and Kenneth O Stanley. A Novel Human-Computer
Collaboration: Combining Novelty Search with Interactive Evolution. In
Proceedings of the 16th annual conference on Genetic and Evolutionary
Computation - GECCO 2014, pages 233–240, 2014.

52. Hao Yu and Bogdan Wilamowski. LevenbergMarquardt Training, 2010. URL
http://www.eng.auburn.edu/~wilambm/pap/2011/K10149_C012.pdf.

53. Yuan Yuan, Hua Xu, and Bo Wang. An Improved NSGA-III Procedure for
Evolutionary Many-objective Optimization. In Proceedings of the 16th annual
conference on Genetic and Evolutionary Computation - GECCO 2014, pages
661–668, 2014.

67

http://www.eng.auburn.edu/~wilambm/pap/2011/K10149_C012.pdf


REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

03–26–2015 Master’s Thesis Sept 2013 — Mar 2015

Leveraging Human Insights by Combining
Multi-Objective Optimization with Interactive Evolution

15-200A

Christman, Joshua, R, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-15-M-060

Lincoln Laboratory
Massachusetts Institute of Technology
244 Wood Street
Lexington, MA 02420-9108
Dr. Marc Viera, mviera@ll.mit.edu
781-981-1077

MIT-LL

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

Deceptive fitness landscapes are a growing concern for evolutionary computation. Recent work has shown that combining
human insights with short-term evolution has a synergistic effect that accelerates the discovery of solutions. While
humans provide rich insights, they fatigue easily. Previous work reduced the number of human evaluations by evolving a
diverse set of candidates via intermittent searches for novelty. While successful at evolving solutions for a deceptive maze
domain, this approach lacks the ability to measure what the human evaluator identifies as important. The key insight
here is that multi-objective evolutionary algorithms foster diversity, serving as a surrogate for novelty, while measuring
user preferences. This approach, called Pareto Optimality-Assisted Interactive Evolutionary Computation (POA-IEC),
allows users to identify candidates that they feel are promising. Experimental results reveal that POA-IEC finds
solutions in fewer evaluations than previous approaches, and that the non-dominated set is significantly more novel than
the dominated set. In this way, POA-IEC simultaneously leverages human insights while quantifying their preferences.

Evolutionary computation, interactive evolutionary computation, human-led search, fitness, pareto, pareto front,
multi-objective, multi-objective evolutionary algorithm, non-dominated set, deception, non-objective search, novelty
search, stepping stones, serendipitous discovery

U U U UU 77

Maj. Brian G. Woolley, AFIT/ENG

(937) 255-3636, x4618; brian.woolley@afit.edu


