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Abstract 

The DoD has frequently demonstrated its ability to procure phenomenal systems; however, these accomplishments are often 
tarnished by substantial cost and schedule overruns. While defense acquisition policies are continually being revised to address 
these perennial problems, many believe that a more fundamental source of these overruns is the lack of flexibility in the systems 
being developed, which tend to preclude effective responses to unexpected events. However, providing justification to invest in 
flexibility is a tough sell when the measure of value is a military capability or political outcome, as there is no extant method to 
demonstrate the potential return on investment. This paper introduces a decision tool for valuing the inherent ability of different 
systems or designs to respond to uncertainty. The proposed tool is essentially a modification of the current life cycle cost model 
and is premised on the notion that the need for capability changes in a system arises in a stochastic manner that can be incorpo-
rated into a continually updated, expected value model presented in terms of total life cycle cost. The cost-based decision tool 
presented here quantifies the ability of competing designs to respond to these capability changes via a cumulative distribution 
function (CDF). The design with the most favorable CDF (i.e., the one that is most likely to meet the most likely set of require-
ments at the lowest expected value curve of life cycle cost) is deemed to be the “best” design. 
© 2013 The Authors. Published by Elsevier B.V. 
Selection and/or peer-review under responsibility of Georgia Institute of Technology. 
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1. Introduction and Motivation 

Perennial cost and schedule overruns have become the norm for DoD programs. To those familiar with the histo-
ry of defense acquisition, these systemic deficiencies are widely known, as is the standard response from the Penta-
gon. If the past is any indication of the future, then we will soon see another acquisition reform effort spawned and 
promulgated with the expressed intent of reducing monetary waste, accelerating acquisition timelines, or improving 
overall mission responsiveness. Sadly, the reform efforts are not likely to make a difference. This observation is not 
meant to disparage the various well-intentioned reform efforts and the dedicated professionals that create and 
implement them; the point is, rather, that the desired improvements are seldom, if ever, realized [1,2,3]. 

Increasingly, DoD leadership is less likely to attribute these cost and schedule overruns to flaws in the acquisition 
process, but instead to the lack of flexibility in the systems being developed. If systems can be designed in such a 
way that they are able to more readily respond to various sources of change, then it stands to reason that when 
uncertainties become realities, the impact to the program will be lessened. Among DoD policy makers and acquisi-
tion professionals, there is broad consensus that greater flexibility in weapon systems is a desirable goal. And yet, it 
is rarely achieved.  

The problem is that flexibility necessarily incurs additional investment costs. The most obvious is the direct cost 
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associated with implementing the flexible design, generally related to pre-provisioning the system with nascent 
capabilities that can be matured to full implementation at a later time. The less obvious cost of flexibility pertains to 
the tradeoffs that must be made against other performance attributes. The notion of designing to the bleeding edge of 
performance requirements is antithetical to the aims of flexibility, as it consumes engineering tradespace. An inher-
ently flexible design cannot, axiomatically, achieve the same level of technical performance along every dimension 
as the performance-optimized design. This “capability cost” of flexibility can serve as an especially strong deterrent 
in DoD’s contemporary, requirement-driven, performance-dominated mindset. In such an environment, the costs 
associated with more flexible design solutions must be assiduously justified in order to have any hope of being 
implemented. At present, there is no such method within the DoD. 

This paper provides a potential method for valuing “flexible” designs in the form of a rational decision tool for 
discriminating between competing design options. This tool consists of a top-down, intrinsic value model based on 
the familiar notion of Life Cycle Cost (LCC). The idea is to refine current LCC calculations to better account for the 
value of capability opportunities that are likely to arise throughout the life of a program, and that the “best” design 
that achieves some assured minimum capability is merely the one that is the most likely to be the most cost-effective 
over its life cycle. The relative measure of cost effectiveness is via a cumulative distribution function of life cycle 
cost unique to each candidate design. 

2. Background 

There is a substantial amount of literature on the topic of flexibility, largely focused on how to implement it and 
measure it. Less common is the question of how to value flexibility. Rarer still is discussion regarding how to value 
flexibility within the context of defense systems. Moreover, the issue of ascribing value to flexible designs is general-
ly regarded as a problem involving decision making under conditions of uncertainty. Although there is also ample 
literature on this subject, the applicability to the DoD is again limited due to a lack of typical value metrics.  

2.1. Decision making under uncertainty 

Based on the literature, we know that the value of flexibility is positively correlated to uncertainty, such that the 
greater the uncertainty in the system, the greater the value a flexible design option is likely to have [4,5,6,7]. But if 
we are to make any headway on quantifying the value of flexibility, we need the ability to make the best decision 
under conditions of uncertainty.  

This type of problem has been studied extensively in economics. One common approach within that community 
is net present value (NPV) analysis. NPV is a standard method for determining the time value of money. It takes into 
account the net cash flow at a particular time t, as well as the required rate of return (i.e., discount rate). Thus, the 
expected cash flows are discounted at an interest rate that accounts for the time value of money as well as the project 
risk. Several studies use NPV as part of their effort to quantify flexibility, including [8,5,9,10]. 

Another approach is real options analysis, which exists at the intersection of value and uncertainty. Economic 
theory defines a real option as the “right, but not the obligation to take an action at a predetermined cost and at a 
predetermined time” [6]. Copeland [11] claims that only real options can “provide a theoretically sound tool for 
valuing” decision flexibility. In a manufacturing application, Ajah [12] states “that the adoption of the real options 
approach early in the conceptual design process can offer to the designer, extra degrees of freedom of systematically 
considering and designing system elements.” 

2.2. The problem with net present value 

In general, researchers tend not to be in favor of using NPV for decisions involving flexibility [13]. While NPV is 
sufficient in cases of “low uncertainty, or [when] you have no scope to change course” [11,14], it is not appropriate 
for situations involving great uncertainty, as it assumes a predetermined path through an established set of alterna-
tives. This is contrary to the core aim of flexible processes and designs, so a different method is needed—one that 
can take more (and fewer predetermined) decision options into account [15,16,17]. 

2.3. The problem with real options 

While real options analysis is widely seen as preferable to NPV for uncertainty analysis, it comes with its own set 
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of criticisms, especially if applied to the problem of valuing flexibility in the DoD. For example, the underlying 
financial model (known as Black-Scholes) is generally only valid under certain constraining assumptions, many of 
which are not likely to be applicable to defense acquisition. One of the model assumptions is that the valued asset 
must be traded on an “efficient” market, where there is no possibility of arbitrage. While arguably true in the broader 
capital market, this assumption is not warranted within the DoD monopsony (i.e., single buyer), where markets are 
often artificial, and far from efficient. Another stipulation of the Black-Scholes model is that the asset must have a 
price that follows geometric Brownian motion, thus creating a return on the asset that is consistent with a random 
lognormal distribution. However, random fluctuation of price is a debatable premise in a standard open market, let 
alone in the cloistered defense industry. Finally, real options in military acquisition programs are likely to be path-
dependent and highly interdependent. In both cases, traditional financial options methodologies tend to fail because 
the underlying stochastic differential equations are not available or simply do not apply [18,17]. 

2.4. Difficulties associated with valuing military capabilities 

In order to make meaningful value judgments, we must establish a utility function that will quantify the value of 
capability in some ratio-level comparable units. While this is relatively routine for profit-driven commercial sys-
tems, it will necessarily be more challenging for military systems, as the utility function will almost certainly not 
involve a monetizable metric like earnings. Instead, for example, we would need to somehow devise a function (or 
more likely, a series of functions) for determining the utility of an extremely wide range of military capabilities. 

In principle, there is a solution. Under the neoclassic economic definition of value, an item’s value can be estab-
lished by determining a customer’s willingness to pay. Thus, we can surmise that the value of a particular military 
capability can be determined by ascertaining the maximum amount the government is willing to give up (of some 
measureable resource) to obtain the capability (i.e., the value of a given capability to the government = the maxi-
mum cost the government is willing to pay for the capability). The devil is in the details, however.  

Assigning a numerical value to the right side of this equation (i.e., what the government is willing to pay) is a 
daunting endeavor. The most obvious approach would be to use the dollar amount budgeted by the government. But 
this is problematic for a multitude of reasons. Consider that the actual system cost may include a number of other 
scarce resources (e.g., time, critical skills, facilities) that are not captured in the government budget. Technically, 
economic cost includes the loss of opportunities as well, so we would also need to account for the cost of losing or 
vitiating other capabilities by virtue of the fact that we are committing resources to this capability. Once again, 
though, we would face the dilemma of assigning a value to a capability, with only budgets to guide us, so our 
original problem is further complicated because it is now recursive. 

Finally, even if we were to accept that budgeted costs will be adequate, there is no reason to believe this repre-
sents the maximum cost the government is willing to pay. Firstly, the government may, in principle, be willing to 
budget more for a particular capability, but has reason to believe that a lower amount will suffice. The problem is 
that the government generally establishes its program budgets based on expected actual costs, not the perceived 
value of the program or resulting capability set. Secondly, budget allocation processes are notoriously volatile, 
subject to any number of political vagaries that have nothing to do with the merits of a particular program or capa-
bility. Thus, one year’s total budget allocation for a given program may be substantially different from the next 
year’s allocation for the same program, though there was no change in its perceived value. 

3. A More Flexible Approach to Valuing Flexibility 

Given the difficulty of establishing the value of military capabilities, it is clear we need a more flexible approach 
to determine the value of flexibility for DoD programs. The question thus arises whether we can establish the merits 
of a capability without having to explicitly determine its value. This paper argues that this is feasible through a 
modification to the familiar life cycle cost (LCC) model. The fundamental idea being proposed is to refine current 
life cycle cost calculations to better account for the value of capability opportunities that are likely to arise through-
out the life of a program. Before proceeding to a more comprehensive explanation, however, it may be beneficial to 
review the salient aspects of DoD’s current LCC methodology. 

3.1. Life cycle cost 

LCC is a systematic accounting approach for aggregating all direct and many in-direct costs for a given system. It 
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includes not just total acquisition costs, but also costs related to operations, maintenance, and disposal. Importantly, 
LCC also accounts for risks, generally either through sensitivity analyses or through formal quantitative risk analysis 
[19]. By providing senior decision-makers with their single best source of estimated cost to achieve a given capabil-
ity, the LCC estimate is often instrumental in determining the ultimate procurement fate of a program. 

Formal DoD guidance calls for the LCC to be first accomplished as part of the initial Analysis of Alternatives 
(AoA) and then updated as part of major milestone decision reviews. Aside from these updates, however, the system 
LCC is generally a static measurement. When calculated, it provides a “snapshot” estimate of total life cycle cost on 
the assumption that there will be no deviations from key cost, schedule, and performance parameters, which are 
collectively referred to as the APB, or Acquisition Program Baseline [19]. Of course, one thing we know with 
certainty is that there will almost always be deviations from the APB.  

While the assumption of a static APB may be unwarranted, programs proceed with it anyway, largely because 
there must be a foundation upon which to build the cost estimates against, but also because the alternative of trying 
to account for the non-deterministic uncertainty in precisely how the program will deviate from the APB is simply 
not possible, or at least just too daunting. It can be argued, however, that even though uncertainty is—by defini-
tion—not deterministic, it may be possible to employ stochastic probability methods that can yield cost estimates 
that are likely to be more accurate in the long run [20]. Although establishing the initial models to accomplish this 
would require significant resource investment, the possibility of more accurate LCC estimates—and the improve-
ment in decision-making that would accompany that—promises an enormous return on such an investment. 

3.2. Life cycle cost under uncertainty 

Clearly, there is substantial motivation to provide improved LCC estimates, at least to the level required to sup-
port decisions considering alternative flexible design options. The notion that this can be done by accounting for 
random events that affect the system forms the basis of life cycle cost under uncertainty (also referred to as stochas-
tic life cycle cost). The idea of applying this strategy to acquiring military systems appears to have been first intro-
duced in two papers related to a DARPA (Defense Advanced Research Projects Agency) satellite program [21,22]. 
As described by Brown, stochastic life cycle cost is premised on three assertions— 
• The cost to develop, procure, and operate a system with some assured minimum capability over its lifecycle is 

not a deterministic value. 
• Instead, this cost can be modeled as a random variable with a probability distribution resulting from a set of 

uncertainties introduced throughout the system's life. 
• This random variable metric is a relevant basis for comparison between alternative … design choices. 

Brown is to be commended for introducing this simple, but deceptively powerful, notion of stochastic life cycle 
cost. However, the initial treatment does not develop the principle fully, nor explore its broader applicability. The 
type of stochastic events he considers are only those specific events that critically influence the success of a satellite 
system, i.e., launch failure and on-orbit component failure. Brown explicitly does not consider other aspects of life 
cycle uncertainty that affect virtually all programs, such as “requirements creep, funding stream volatility, technolo-
gy development risk, and volatility of demand” [21]. Yet he clearly does recognize that the model could be applied 
to these other sources of uncertainty, noting that these variables are “left for future analysis.” To date, it does not 
appear that such an analysis has been accomplished by him or others. 

Consequently, we propose a research strategy to logically extend this promising technique in a manner that may 
provide a number of potential benefits over current practices. Specifically, we intend to expand the life cycle cost 
under uncertainty idea to a robust and comprehensive methodology for effectively valuing system design alterna-
tives.  

3.3. Current Expected Value of Life Cycle Cost Curve (CEVLCCC) 

To capture the utility of this improved LCC concept, we proffer the term, Current Expected Value Life Cycle 
Cost Curve, or CEVLCCC (pronounced kev’ lik). The name is intended to convey a couple of key distinctions from 
both the standard LCC and Brown’s stochastic LCC. The “Expected Value” phrase discriminates CEVLCCC from 
the standard LCC as a more probabilistically accurate measurement of system cost; whereas the word “Current” 
connotes the fact that the CEVLCCC tool is intended to be employed as a continually updated decision analysis tool. 
The notion that an LCC estimate might be applied dynamically, and at lower levels of system design, is distinct from 
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Brown’s view that the stochastic LCC could only be useful for “preliminary trade space exploration” and not for 
value determinations “below the architectural level” [22]. Finally, “Curve” denotes that the output is a cumulative 
distribution function (CDF) of potential costs, not a single point estimate. 

Note that under this conception, the “expected value” concept is essentially a penalty that attempts to capture the 
anticipated cost impacts related to future baseline changes. The more cost-effectively a given design can respond to 
these changes, the lower the penalty. Given the inherent cost accounting methodology of the CEVLCCC approach, 
as long as each design is capable of achieving “some assured minimum capability,” then the corresponding capabili-
ties and outcomes need not be valued. The relative value can be inferred solely from each design’s expected life 
cycle cost, with the best value presumably the one with the lowest adjusted LCC.  

In practice, the proposed methodology is also straightforward, consisting of the following four steps: 
1. Establish the System Design Options. First, the user identifies the candidate designs to be evaluated. Each 

design must be of sufficient maturity that its traditional life cycle cost can be estimated, and cost impacts can be 
estimated should there be changes related to the assured minimum capability of the system.  

2. Construct Time-Phased CDFs. Next, the user creates CDFs to characterize the possibility of change to the 
assured minimum capability of the system. In practice, this means estimating the probability that the threshold 
value of existing schedule or technical performance requirements will change at various time points in the fu-
ture, as well as estimating the probability that specific new requirements will be imposed. 

3. Estimate LCC Impacts. The user then estimates LCC impacts associated with the potential changes—as charac-
terized in the PDF—in the assured minimum capability of the system. As part of each estimate, the user speci-
fies a minimum and maximum cost along with an associated confidence ranging from 50 to 90 percent. 

4. Select Most Favorable CEVLCCC. The CEVLCCC tool then outputs a probability curve in the form of a CDF 
of expected life cycle costs associated with each design. If the resulting cost curve of one design is perceived to 
be more favorable than the other(s), then the user now has a quantitative rationale for choosing among the can-
didate designs. 
The authors have constructed an Excel-based graphical user interface to automate these steps, which we refer to 

as simply the “CEVLCCC tool.” 

4. Methodology and Hypothetical Use Case 

To appreciate the process and potential utility of the CEVLCCC tool, we illustrate its methodology and applica-
tion using a hypothetical air superiority stealth fighter program that is considering three competing payload designs. 
The program wishes to determine which design is likely to be the best value over the program’s life cycle. The 
detailed design differences are not relevant to understanding the principle of the CEVLCCC tool; the reader need 
only be aware of the basic distinction between each proposed payload design, which is readily inferred from the 
name of each option. The three options, along with their traditionally estimated life cycle cost, are shown in Table 1. 
For this exercise, all LCC values are entirely notional, and will be treated as point estimates with no associated error. 

Table 1. Payload Designs Options and Estimated Life Cycle Cost 

Payload Design Option Estimated LCC ($) 
Small Internal $1000 
Large Internal $1050 
External $950 

 
Relative to the Small Internal payload design, the Large Internal design is expected to cost five percent more 

over its life cycle (mostly due to increased airframe weight) while the External design is expected to cost five 
percent less (due to simpler and proven technology related to externally-mounted armaments). In addition, all three 
candidate designs are expected to be able to meet or exceed the current threshold values of all current requirements. 
So under the traditional conception of LCC estimating, and assuming everything else was equal, the payload design 
above with the lowest estimated LCC (i.e., External at $950 million) would typically be the option selected.  

If one were to stipulate that the current program baseline will remain fixed (i.e., no changes to the existing set of 
requirements),  it certainly would make sense to choose the External design over the other two options. The problem 
is, of course, that this stipulation is extremely unrealistic. Or, put another way, this approach is too simplistic as it 
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does not account for the value of the flexibility embedded within certain architectural options. We may not know 
exactly how or when, but the APB of the system will change, and the fact is that each of the designs has an intrinsi-
cally different ability to respond to APB changes. The External design may be the best option given a fixed baseline, 
but what is the best option in the more realistic program future that is characterized by uncertainty? The intent of the 
CEVLCCC tool is to answer this question in an objective, quantifiable manner. 

4.1. Existing (known) requirements 

In an actual program, there would likely be a large number of existing schedule and performance requirements 
that each design would need to be evaluated against as part of a comprehensive CEVLCCC tool analysis. For 
simplicity, we will consider only the four known requirements shown in Table 2. Notional threshold and objective 
values are also listed for each of these requirements. 

Table 2. Existing Requirements for Stealth Air Superiority Fighter 

# Requirement Description Threshold Objective 
1 Armament of (X) air-to-air guided missiles X=4 X=8 
2 Nominal front sector radar cross section (RCS) no greater than (X) m2 X=0.10 X=0.02 
3 Top speed of Mach (X) X=2.0 X=2.5 
4 Initial Operating Capability (IOC) within (X) months X=84 X=60 

4.2. New (unknown) requirements 

Changes to known requirements are not the only source of uncertainty that should be evaluated. We must also 
take into account the possibility that new requirements will be levied on the program at some point in the future. 
There may be several potential new requirements to consider as part of a thorough analysis, but for this simplified 
scenario, we will evaluate just one potential unknown requirement. As listed in Table 3, the fifth requirement to be 
evaluated involves the ability of the aircraft to strike ground targets. In other words, although the system does not 
currently have a formal air-to-ground mission requirement, the program wishes to account for the possibility that 
this capability will be required at some point in the future. 

Table 3. Potential New Requirement for Stealth Air Superiority Fighter 

# Requirement Description Threshold Objective 

5 Armament of X air-to-ground guided missiles X=2 X=4 

 
The CEVLCCC tool will attempt to evaluate how cost-effectively each of the three payload designs can respond 

to changes in the threshold values of these five requirements (four existing, and one new). There is, of course, also 
the possibility that the program baseline will be changed in ways that cannot be reasonably foreseen at the present 
time. These so-called “unknown unknowns” are a genuine hazard for virtually every program; unfortunately, they 
are axiomatically beyond the scope of an a priori quantitative valuation strategy such as the CEVLCCC tool. 

4.3. Marginal Probability Cost (MPC) 

A key CEVLCCC assumption is that it is possible to formulate probabilistic modeling of the stochastic processes 
that cause deviations in the APB. One way to accomplish this is to treat the value for each performance parameter—
in this case, each threshold value—as a random variable, and construct its cumulative distribution function (CDF). 
Then for each potential threshold value, there is an associated marginal probability within the CDF, as well as a 
corresponding LCC estimate to effect that capability for each design option. In aggregate, these cost and probability 
threshold descriptions comprise what we refer to as each requirement’s Marginal Probability Cost (MPC).  

Table 4 shows the MPCs for all three payload designs relative to requirement #1, air-to-air armament (for sim-
plicity, the costs in these tables are shown as mean values rather than as a range of estimated values with an associ-
ated confidence interval that the actual CEVLCCC interface accommodates). The bolded row represents the current 
threshold value. We would generally not expect to have a dollar amount specified in this row for any design option, 
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as any costs related to meeting the current threshold value would presumably have been incorporated into the 
traditional LCC estimates in Table 1. However, if there is uncertainty related to this threshold value, the standard 
LCC estimate may be adjusted accordingly, and the structure of the MPC matrix can accommodate that. Reductions 
in the requirement value (i.e., making the requirement less stringent) can also be accommodated. 

Table 4. Marginal Probability Costs for Requirement #1 (A2A Armament) 

Threshold 
Value (X) 

Probability Mean Estimated Cost ($M) 
Cumulative Marginal Small Internal Large Internal External 

8 5% 5% $127.5 $46.0 $2.8 
6 15% 10% $72.5 $12.5 $2.3 
4 100% 85% $0.0 $0.0 $2.0 

 
To illustrate how to interpret this table, consider the current threshold value of X = 4. The program has estimated 

that there is a 100 percent chance that the system will be required to have the capability to employ at least four air-
to-air missiles (the current value). However, they have also estimated that there is a 15 percent chance the fighter 
will need to be able to carry at least six missiles instead (and a 10 percent chance it will need to carry exactly six). If 
such a requirement change occurs, there will be a cost impact regardless of the design chosen, but the level of 
impact varies greatly among the designs. If six missiles are required, the cost impact is relatively low for the Exter-
nal design ($2.3M) where there is ample space for expansion; moderate for the Large Payload design ($12.5M) 
where there is some extra space; and substantially greater for the Small Payload design ($72.5M) where there is no 
available space. In other words, the External payload design is the most flexible with respect to changes in the air-
to-air armament requirement, and the Small Internal payload design is the least flexible. 

It is important to recognize that the MPCs are time-dependent. Both the probabilities that a requirement will 
change and the costs incurred due to that change will certainly vary over time. Under a traditional acquisition 
strategy (as opposed to evolutionary acquisition), as a program matures, the probability that a requirement threshold 
value will change is likely to reduce, whereas the cost of accommodating it is likely to increase. The CEVLCCC tool 
is agnostic to the direction of probability change, but consider an example that might apply to the traditional acquisi-
tion model approach. A program might estimate that a particular threshold value has a ten percent cumulative 
probability of changing prior to the Preliminary Design Review (PDR), but only a five percent probability of chang-
ing between the PDR and Critical Design Review (CDR). Viewed in this way, the reader may recognize a certain 
similarity between these various MPCs and traditional risk burn-down plans. This is an important point, as the 
MPCs would need to be tracked in a similar manner, and could reasonably be integrated with traditional risk man-
agement techniques.   

4.4. Constructing the CEVLCCC 

Fundamentally, each MPC is an expected value calculation: however, since we intend to have the CEVLCCC 
output be a probability distribution, the intermediate expected values cannot simply be summed. Instead, we must 
track the mean and variance of all relevant constituent distributions as they are fused into the final curve that charac-
terizes the stochastically-adjusted life cycle cost.  

Given even a modest number of requirements, though, the potentially large number of associated threshold values 
along with the possibility of multiple time phases can quickly lead to a highly cumbersome set of distribution 
calculations. The current version of the CEVLCCC tool makes two simplifying assumptions to make this task more 
manageable. First, it assumes that the uncertainty associated with each cost estimate is normally distributed. Second, 
it treats the probability estimates associated with each threshold value as accurate point estimates with no associated 
uncertainty. Even allowing for these caveats, the calculations are still not trivial, so the remainder of this section will 
describe the underlying computational algorithm in some detail. 

 The first task is to merge the time points for the expected values of each requirement threshold value. To achieve 
this, we calculate the weighted mean and standard deviation values for each threshold value of each requirement 
across all time horizons. Next, we combine—or more formally, convolve—the expected value distributions for each 
requirement threshold into a consolidated requirement-specific MPC. Given the assumption that the expected values 
(i.e., the product of the costs and the probability) associated with each requirement threshold value are independent 
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of one another, this becomes a relatively straightforward task. This is because we know that the convolution of 
independent, normally distributed probability density functions yields a normally distributed density function. 
Moreover, the mean and variance of the resulting density function are determined by summing the means and 
variances, respectively, of the original functions.  

Once we have collapsed the expected values across time points into a single distribution and convolved all ex-
pected values within a given requirement into a single distribution, our last task is to convolve the expected values 
of each requirement into a single distribution that characterizes the LCC distribution of each design option. This last 
step yields a unique CDF for each design option, constructed from a normal probability distribution function with a 
known mean and variance. Once all the intermediate steps are accounted for, the comprehensive formula to obtain 
the mean—or expected value—of this distribution function is given as 

 [ ] = + ( )  
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and the full standard deviation equation becomes 
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From this, the CEVLCCC—in the form of a CDF—for each design alternative can be graphically represented and 

compared. 

5. Discussion 

5.1. Implementation 

The CEVLCCC tool is intended for implementation at the individual program level. Logically, if this results in 
the selection of designs that have a greater value over the system’s life cycle, the payoffs could be enormous. If the 
use of this tool resulted in selecting designs that were, on average, ten percent more cost effective over their life 
cycle, the Pentagon would easily save—or obtain value equivalent to—tens of billions of dollars every year.  

While the potential benefits to the program are substantial, so too are the investment costs. There is undeniably a 
large amount of effort associated with obtaining valid cost and probability estimates for each potential threshold 
value associated with both existing and new requirements. Depending on the magnitude of the design decision, 
dozens of cost and probability estimates may need to be generated, each of which will consume project resources. 
Moreover, the utility of the CEVLCCC tool depends in large part on the first “C”: It needs to remain current. In 
order to be able to make timely and relevant decisions, these numerous cost and probability estimates would need to 
be frequently updated, further burdening program resources.  

In addition, regardless of the maturity or size of the program, we believe the up-front costs can be effectively 
managed in a number of ways. For instance, with respect to the cost estimates, while the program may occasionally 
prefer a formal cost proposal from the contractor, in most cases, the less rigorous (and far less costly) “engineering 
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estimate” would likely be sufficient. In addition, it is reasonable to suppose there is significant synergy in the effort 
necessary to analyze the cost impacts of multiple threshold values relative to the same requirement. For the probabil-
ity estimates, programs might derive values by maintaining awareness of emerging threats and technological break-
throughs, as well as studying historical trends of similar programs. 

While the preceding points may bolster the case for implementing the CEVLCCC tool, the real key to making 
this type of approach feasible will require that defense programs adopt a fundamentally different approach to risk 
management. As noted earlier, there is a close relationship between the cost impact and probability estimates re-
quired for the CEVLCCC analysis and the information needed to perform traditional risk management. The salient 
difference is that risk management traditionally only considers the downside of uncertainty, whereas a stochastic 
LCC analysis must account for the upside of uncertainty as well, i.e., opportunity. Thus, the current practice of 
managing only the risk component of uncertainty is too narrowly conceived; programs should, in fact, have an 
uncertainty management plan that identifies sources of uncertainty, characterizes their ranges, and estimates proba-
bilities of (both good and bad) outcomes [23]. Then the program can develop mitigation strategies related to both 
risks and opportunities. Under such an approach, not only would the types of inputs needed to maximize the utility 
of the CEVLCCC tool be more readily available, but the tool could be readily integrated into the program’s overall 
uncertainty management strategy. 

5.2. Future Work 

The authors believe the principal improvement needed for the CEVLCCC tool is the ability to accommodate 
nonparametric distributions. This seems especially important for the cost estimates, for which the normal distribu-
tion assumption may be unwarranted. This is not only because every cost estimate must have a zero lower bound, 
but the uncertainty surrounding cost estimates tends to be asymmetric, such that the risk of exceeding the expected 
cost is generally not equal to the risk of a commensurate under-run. To implement this change would require addi-
tional information regarding each cost estimate, but even a minimal amount of input (e.g., specifying whether the 
distribution is positively or negatively skewed) would help to make the distributions more reflective of reality, and 
the final CEVLCCC more reliable. Although the convolution calculations required to accommodate non-parametric 
distributions would be cumbersome, the reliability improvement would likely be worth the effort. 

Another key enhancement is to allow the user to characterize the uncertainties related to the threshold value CDF 
probabilities. This improvement would greatly complicate the underlying calculations, especially if the estimates 
were allowed to be non-parametric, but again the increased accuracy and reliability of the CEVLCCC may make the 
investment worthwhile. For both this improvement and the cost estimating improvement, integrating Monte Carlo 
analyses may be the most effective solution. 

Finally, the CEVLCCC tool needs to be battle-tested. It should be validated via use in historical (vice hypothet-
ical) case studies, and ultimately vetted through an active defense program in order to assess its practical efficacy. 
As part of this effort, we anticipate that users are likely to request the ability to more readily isolate the relative 
contributions of various inputs to the CEVLCCC (i.e., sensitivity analysis tools), and there are a number of addition-
al features that could be embedded into the CEVLCCC tool to support that goal. 

6. Conclusion 

By assimilating and expanding the novel concept of LCC under uncertainty, the CEVLCCC tool presented in this 
paper is capable of serving as a straightforward, cost-based decision model for valuing system design options in the 
DoD. The authors have shown via a hypothetical use case how this tool can be used to quantitatively discriminate 
between designs using a stochastic version of expected LCC as a proxy for value. Under this approach, the best 
design is typically the one that is likely to be the most cost-effective over its life cycle.  

Prior to introducing the CEVLCCC tool, we noted the problems related to using either NPV or real options tech-
niques in defense applications, but we also asserted that the most formidable challenge to valuing flexibility in the 
DoD relates to monetizing military capabilities. The CEVLCCC approach sidesteps all of these issues. In fact, to the 
authors’ knowledge, this tool represents the first quantitative methodology capable of justifying flexibility invest-
ments for Pentagon systems that does not need to assign value to the imputed capabilities or intended political 
outcomes. Moreover, the basic technique consists of a simple premise (i.e., expected value) and an intuitive output 
(i.e., life cycle cost), which can be readily understood by key stakeholders across the acquisition community, thereby 
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potentially reducing entry barriers. 
The CEVLCCC tool concept is premised on the notion that the need for capability changes in a program arises in 

a stochastic manner that can be modeled and incorporated into a continually updated, expected value model of total 
program cost. If implemented as part of an overall uncertainty management strategy, the authors contend that a tool 
like this could drastically improve design decisions in virtually all defense programs, and could feasibly reduce costs 
and/or improve value outcomes by tens of billions of dollars a year across the DoD. 
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