Date of Award
9-2021
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
Department
Department of Operational Sciences
First Advisor
Andrew Geyer, PhD
Abstract
Clustering weather data is a valuable endeavor in multiple respects. The results can be used in various ways within a larger weather prediction framework or could simply serve as an analytical tool for characterizing climatic differences of a particular region of interest. This research proposes a methodology for clustering geographic locations based on the similarity in shape of their temperature time series over a long time horizon of approximately 11 months. To this end an emerging and powerful class of clustering techniques that leverages deep learning, called deep representation clustering (DRC), are utilized. Moreover, a time series specific DRC algorithm is proposed that addresses a current gap in the field. Finally, deep learning based weather prediction is an increasingly common research topic as a means of obtaining more rapid predictions when compared to traditional numerical weather prediction (NWP). Since there are known physical equations that govern atmospheric behavior, namely the Navier-Stokes equations, the concept of reformulating these laws into a physics based loss function is explored with particular interest in whether a model trained with such a loss function can outperform it’s baseline counterpart.
AFIT Designator
AFIT-ENS-DS-21-S-037
DTIC Accession Number
AD1149667
Recommended Citation
Beveridge, Nathaniel R., "Deep Learning for Weather Clustering and Forecasting" (2021). Theses and Dissertations. 5082.
https://scholar.afit.edu/etd/5082