Date of Award
3-12-2008
Document Type
Thesis
Degree Name
Master of Science in Aeronautical Engineering
Department
Department of Aeronautics and Astronautics
First Advisor
Marina B. Ruggles-Wrenn, PhD
Abstract
The creep behavior of an oxide-oxide ceramic matrix composite (CMC) was investigated at 1200°C in laboratory air, in steam and in argon. The composite consisted of a porous alumina-mullite matrix reinforced with laminated, woven mullite/alumina (Nextel/720) fibers. The composite had no fiber coating and relied on its porous alumina/mullite matrix for flaw tolerance. Tensile stress-strain behavior was investigated and the tensile properties were measured at 1200°C in laboratory air. Tensile creep behavior of the CMC was examined for creep stress levels of 73, 91, 114 and 136 MPa. Creep run-out, set to 100 h, was achieved for stress levels ≤ 91 MPa in air. The presence of steam or argon accelerated the creep rates the N720/AM composite. Optical and scanning electron microscope (SEM) micrographs were used to examine fracture surfaces and to evaluate failure mechanisms. Fracture surfaces of the N720/AM composite were predominately planar. Limited areas of short fiber pull-out were observed for specimens tested at low creep stress levels in air.
AFIT Designator
AFIT-GAE-ENY-08-M11
DTIC Accession Number
ADA478784
Recommended Citation
Genelin, Christopher L., "Effects of Environment on Creep Behavior of Nextel 720/Alumina-Mullite Ceramic Composite at 1200°C" (2008). Theses and Dissertations. 2679.
https://scholar.afit.edu/etd/2679