Date of Award

12-16-2008

Document Type

Dissertation

Degree Name

Doctor of Philosophy (PhD)

Department

Department of Electrical and Computer Engineering

First Advisor

Jason D. Schmidt, PhD

Abstract

Lasers offer tremendous advantages over RF communication systems in bandwidth and security, due to their ultra-high frequency and narrow spatial beamwidth. Atmospheric turbulence causes severe received power variations and high bit error rates (BERs) in airborne laser communication. Airborne optical communication systems require special considerations in size, complexity, power, and weight. Conventional adaptive optics systems correct for the phase only and cannot correct for strong scintillation, but here the two transmission paths are separated sufficiently so that the strong scintillation is \averaged out" by incoherently summing up the two beams in the receiver. This requisite separation distance is derived for multiple geometries, turbulence conditions, and turbulence effects. Integrating multiple techniques into a system alleviates the deleterious effects of turbulence without bulky adaptive optics systems. Wave optics simulations show multiple transmitters, receiver and transmitter trackers, and adaptive thresholding significantly reduce the BER (by over 10,000 times).

AFIT Designator

AFIT-DEE-ENG-09-02

DTIC Accession Number

ADA491250

Share

COinS