Date of Award
3-26-2015
Document Type
Thesis
Degree Name
Master of Science
Department
Department of Aeronautics and Astronautics
First Advisor
Marina B. Ruggles-Wrenn, PhD.
Abstract
Tension-compression fatigue behavior of an oxide-oxide ceramic matrix composite was investigated at 1200°C in air and steam. The composite is comprised of an alumina matrix reinforced with Nextel 720 fibers woven in an eight harness satin weave. The composite relies on a porous matrix for damage tolerance. Compression and tension tests to failure were conducted to characterize basic mechanical properties. Tension-compression fatigue tests were performed at 1 Hz frequency with a ratio of minimum to maximum stress of -1. Maximum stresses ranged from 60-120 MPa. Fatigue run-out (defined as 105 cycles) was achieved in air at 80 MPa and in steam at 70 MPa. Specimens subjected to 105 fatigue cycles in air retained 100% tensile strength. Steam reduced fatigue lives one order of magnitude and tensile strength 17-38%. Tension-compression fatigue lowered fatigue lives three orders of magnitude from published tension-tension fatigue lives. In air, tension-compression fatigue was shown to be more damaging than creep. The post-test composites microstructure was examined. Failure mechanisms were identified and fracture surface morphologies were characterized. The dominant failure mode under tension-compression fatigue was fiber micro-buckling. Shortened composite lives were associated with planar fractures and coordinated fiber failure due to increased fiber-matrix bonding and matrix densification.
AFIT Designator
AFIT-ENY-MS-15-M-222
DTIC Accession Number
ADA616269
Recommended Citation
Lanser, Richard L., "Tension-Compression Fatigue of an Oxide/Oxide Ceramic Matrix Composite at Elevated Temperature in Air and Steam Environments" (2015). Theses and Dissertations. 176.
https://scholar.afit.edu/etd/176